On the validity of the definition of a complement-classifier

Main Article Content

Mariusz Stopa
https://orcid.org/0000-0003-2948-5964

Abstract

It is well-established that topos theory is inherently connected with intuitionistic logic. In recent times several works appeared concerning so-called complement-toposes (co-toposes), which are allegedly connected to the dual to intuitionistic logic. In this paper I present this new notion, some of the motivations for it, and some of its consequences. Then, I argue that, assuming equivalence of certain two definitions of a topos, the concept of a complement-classifier (and thus of a co-topos as well) is, at least in general and within the conceptual framework of category theory, not appropriately defined. For this purpose, I first analyze the standard notion of a subobject classifier, show its connection with the representability of the functor Sub via the Yoneda lemma, recall some other properties of the internal structure of a topos and, based on these, I critically comment on the notion of a complement-classifier (and thus of a co-topos as well).

Article Details

How to Cite
Stopa, M. (2020). On the validity of the definition of a complement-classifier. Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce), (69), 111–128. Retrieved from https://www.zfn.edu.pl/index.php/zfn/article/view/520
Section
Articles

References

Angot-Pellissier, R., 2015. The Relation Between Logic, Set Theory and Topos Theory as it Is Used by Alain Badiou. In: A. Koslow and A. Buchsbaum, eds. The Road to Universal Logic, vol. II, Studies in Universal Logic. Cham: Birkhäuser, Springer, pp.181–200.

Czermak, J., 1977. A remark on Gentzen’s calculus of sequents. Notre Dame Journal of Formal Logic [Online], 18(3), pp.471–474. Available at: https://doi.org/10.1305/ndjfl/1093888021.

Estrada-González, L., 2010. Complement-topoi and dual intuitionistic logic. Australasian Journal of Logic [Online], 9, pp.26–44. Available at: https://doi.org/10.26686/ajl.v9i0.1819.

Estrada-González, L., 2015. The evil twin: the basics of complement-toposes. In: J.-Y. Beziau, M. Chakraborty and S. Dutta, eds. New Directions in Paraconsistent Logic. New Delhi: Springer India, pp.375–425.

Goldblatt, R., 2006. Topoi: The Categorial Analysis of Logic, Dover Books on Mathematics. Mineola, N.Y.: Dover Publications.

Goodman, N.D., 1981. The logic of contradiction. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik [Online], 27(8-10), pp.119–126. Available at: https://doi.org/10.1002/malq.19810270803 [visited on 3 December 2020].

James, W., 1996. Closed Set Logic in Categories [Online]. PhD Thesis. Department of Philosophy, The University of Adelaide. Available at: <https://digital.library.adelaide.edu.au/dspace/handle/2440/18746> [visited on 3 December 2020].

Kamide, N., 2003. A note on dual-intuitionistic logic. Mathematical Logic Quarterly [Online], 49(5), pp.519–524. Available at: https://doi.org/10.1002/malq.200310055 [visited on 3 December 2020].

Lambek, J. and Scott, P., 1994. Introduction to Higher-Order Categorical Logic, Cambridge Studies in Advanced Mathematics. Cambridge; New York; Melbourne: Cambridge University Press.

Lawvere, F.W., 1991. Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes. In: A. Carboni, M.C. Pedicchio and G. Rosolini, eds. Category Theory. Berlin, Heidelberg: Springer, pp.279–281.

Mac Lane, S. and Moerdijk, I., 1994. Sheaves in Geometry and Logic: A First Introduction to Topos Theory, Universitext. New York [etc.]: Springer-Verlag.

Majid, S., 2008. Quantum spacetime and physical reality. In: S. Majid, ed. On Space and Time [Online]. Cambridge: Cambridge University Press, pp.56–140. Available at: https://doi.org/10.1017/CBO9781139644259.003.

McKinsey, J.C.C. and Tarski, A., 1944. The algebra of topology. Annals of Mathematics, Second Series [Online], 45, pp.141–191. Available at: https://doi.org/10.2307/1969080.

McKinsey, J.C.C. and Tarski, A., 1946. On closed elements in closure algebras. Annals of Mathematics, Second Series [Online], 47(1), pp.122–162. Available at: https://doi.org/10.2307/1969038.

McLarty, C., 1990. Book review: John Bell, “Introduction to toposes and local set theory”. Notre Dame Journal of Formal Logic [Online], 31(1), pp.150–161. Available at: https://doi.org/10.1305/ndjfl/1093635339 [visited on 3 December 2020].

McLarty, C., 1995. Elementary Categories, Elementary Toposes. Oxford: Oxford University Press.

Mortensen, C., 1995. Inconsistent Mathematics, Mathematics and Its Applications vol. 312. Dordrecht [etc.]: Kluwer Academic Publishers.

Mortensen, C., 2003. Closed Set Logic. In: R. Brady, ed. Relevant logics and their rivals. Vol. 2, Western Philosophy Series. Aldershot; Burlington: Ashgate, pp.254–262.

Rauszer, C., 1974a. A formalization of the propositional calculus of H-B logic. Studia Logica [Online], 33(1), pp.23–34. Available at: https://doi.org/10.1007/BF02120864.

Rauszer, C., 1974b. Semi-Boolean algebras and their applications to intuitionistic logic with dual operations. Fundamenta Mathematicae [Online], 83, pp.219–249. Available at: https://doi.org/10.4064/fm-83-3-219-249 [visited on 2 December 2020].

Reyes, G.E. and Zolfaghari, H., 1996. Bi-Heyting algebras, toposes and modalities. Journal of Philosophical Logic [Online], 25(1), pp.25–43. Available at: https://doi.org/10.1007/BF00357841.

Stone, M.H., 1938. Topological representations of distributive lattices and Brouwerian logics. Časopis pro Pěstování Matematiky a Fysiky [Online], 67(1), pp.1–25. Available at: https://doi.org/10.21136/CPMF.1938.124080 [visited on 2 December 2020].

Tarski, A., 1938. Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae [Online], 31, pp.103–134. Available at: https://doi.org/10.4064/fm-31-1-103-134 [visited on 2 December 2020].

Urbas, I., 1996. Dual-intuitionistic logic. Notre Dame Journal of Formal Logic [Online], 37(3), pp.440–451. Available at: https://doi.org/10.1305/ndjfl/1039886520.