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Editorial





“Is logic a physical variable?”
Introduction to the Special Issue

Michał Eckstein, Bartłomiej Skowron

“Is logic a physical variable?” This thought-provoking question
was put forward by Michael Heller during the public lecture

“Category Theory and Mathematical Structures of the Universe” de-
livered on 30th March 2017 at the National Quantum Information
Center in Sopot. It touches upon the intimate relationship between
the foundations of physics, mathematics and philosophy. To address
this question one needs a conceptual framework, which is on the one
hand rigorous and, on the other hand capacious enough to grasp the
diversity of modern theoretical physics. Category theory is here a nat-
ural choice. It is not only an independent, well-developed and very
advanced mathematical theory, but also a holistic, process-oriented
way of thinking.

Michael Heller’s inspiring question provided the first impulse to
organize a meeting of mathematicians, physicists and philosophers
interested in exploring the applications of category theory in their re-
search. The actual conference, co-organized by the Copernicus Center
for Interdisciplinary Studies and the International Center for Formal
Ontology took place on 7-9 November 2019 in Kraków, Poland. The
Conference was the 23rd edition of Kraków Methodological Confer-
ences, held regularly since 1992, devoted to fundamental problems
at the junction between philosophy and sciences. The conference
proceedings are collected in this volume.

The papers in the volume have been authored by philosophers,
physicists and mathematicians. The common denominator uniting
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8 Michał Eckstein, Bartłomiej Skowron

these works is a categorical cognitive perspective, i.e. category theory,
which is gaining more and more interest in Poland, is the central axis
of the volume.

Category theory was developed in the early 1940s. It resulted from
the combination of topological talent of the Polish-American mathe-
matician Samuel Eilenberg and the algebraic talent of the American
mathematician Saunders Mac Lane. In the sixties, the theory devel-
oped significantly, becoming a fully-fledged and independent branch
of mathematics. The development of category theory often took place
in directions previously unanticipated by its creators. In particular,
the deep insights by William Lawvere’s have shown that category
theory has enough potential to even shake the very foundations of
mathematics. Today, category theory is a standard tool not only for
mathematicians, but also theoretical physicists and philosophers. Cat-
egory theory is full of unexpected relationships, deep analogies and
hidden connections between seemingly unrelated structures, arousing
interest among many scientists and scholars, thus reaching far beyond
pure mathematics.

Category theory implies a formal ontology that emphasizes the
relationship between objects and thus diminishes the role of the ob-
jects themselves. This aspect attracts many scholars, but for many it
also makes it difficult to understand what it is all about. Thus category
theory requires a certain effort to change the object-oriented cogni-
tive attitudes. Below we briefly present the content of the all articles
published in the volume to help the Reader to discover the various
aspects of category theory discussed in this volume.

Colin McLarty in the paper Mathematics as a love of wisdom:
Saunders Mac Lane as philosopher points out the similarities between
Aristotle’s and Saunders Mac Lane’s thoughts. The author describes
this unexpected analogy in a very interesting way. Mac Lane, together
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with Eilenberg, have established category theory. They had a great
influence on the development of mathematics in the 20th century. From
the beginning of his career Mac Lane was interested in philosophy,
nevertheless, not as an academic philosopher, but just as a working
mathematician. McLarty points out that both Aristotle and Mac Lane
treated “knowledge” as the “knowledge of reasons”. For Mac Lane,
mathematical understanding is not only to know the proof of a given
theorem, but also to know the reasons for that theorem.

According to George Cantor “The very essence of mathematics
lies precisely in its freedom”. We can understand this statement in
such a way that a mathematician can introduce into mathematics the
concepts (s)he wants to introduce, there are no restrictions in this
process, except the logical constraints. This is very attractive and this
is what makes us want to practice pure mathematics! Zbigniew Se-
madeni in his paper Creating new concepts in mathematics: freedom
and limitations. The case of Category Theory ponders the question:
“What influenced the emergence of category theory?”, from the per-
spective of Platonizing constructivism. The author claims that despite
the fact that the emergence of CT was a transgression (i.e. crossing of
a previously non-traversable limit of mathematical knowledge), the
development of the notion of function since the beginning of the 19th

century was one of the important factors in the emergence of CT. The
author also analyzes the origin of the term functor, claiming that it
can be found already in the works of Tarski and Kotarbiński.

Structuralism in the philosophy of mathematics is a position,
painting it with a broad brush, according to which mathematics con-
cerns certain abstract structures. It seems natural to ask what logic is
behind a given version of structuralism? Logic can influence the prop-
erties of given structures, e.g. metalogical properties. Is it first-order
logic, higher-order logic, or maybe modal logic, or even other? Jean-
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Pierre Marquis in his paper Abstract logical structuralism insightfully
points out that, first of all, structuralism is also about logic itself: that
is, structuralism should also be interested in pondering what kind
of mathematical structure hides behind logic itself and what are the
relations of that structure to other mathematical structures. Secondly,
and more importantly, the author indicates and convincingly justifies,
giving many examples of mathematical structures related to logic,
that this is in fact a categorical logic. In the words of the author: “In-
deed, this is what categorical logic is all about: it reveals the abstract
mathematical structures of logic and it relates them to other abstract
mathematical structures, revealing yet other structural features”.

The theory of toposes is typically linked with intuitionistic
logic, although the actual connection is more subtle. In 1995 Chris
Mortensen formulated the concept of a co-topos, based on closed
rather than open sets, which is related to a paraconsistent logic. In his
article On the validity of the definition of a compelement-classifier
Mariusz Stopa has a critical take on co-toposes. He analyses the def-
inition of the “true” arrow and argues that the definition cannot be
interpreted arbitrarily. As Stopa acknowledges, his analysis hinges
upon the equivalence of two definitions of toposes provided by Mac
Lane and Moerdijk in 1994.

Toposes are also at the core of the article No-signaling in topos
formulation and a common ontological basis for classical and non-
classical physical theories by Marek Kuś. The author provides a con-
cise introduction to Bell-like inequalities, which triggered the founda-
tional tests of quantum mechanics against classical, hidden variables,
theories. His analysis extends also to ‘post-quantum’ scenarios in-
volving the so-called no-signalling boxes introduced by Popescu and
Rohrlich in 1994. The article explains the internal logic of classical,
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quantum and no-signalling theories. Kuś also argues that, with the
help of toposes, one can unveil a common ontological basis for all
three theories.

In 1935 Niels Bohr, in response to the now famous paradox un-
ravelled by Einstein, Podolsky and Rosen, has written: “The apparent
contradiction in this fact [i.e. the impossibility of attaching definite val-
ues to both of two canonically conjugated variables] discloses only an
essential inadequacy of the customary viewpoint of natural philosophy
for a rational account of physical phenomena of the type with which
we are concerned in quantum mechanics.” In his article Quantum
contextuality as a topological property, and the ontology of potential-
ity Marek Woszczek takes this viewpoint and argues that quantum
theory challenges our basic intuitions on “physical definitness” and
“objective reality” and calls for an “ontology of potentiality”. His
pivotal argument is based on the quantum contextuality, which could
be seen—in a category theory spirit—as a topological property.

Quantum geometry, logic and probability is the title of the article
by Shahn Majid. The author provides an inviting introduction to his
original formalism of discrete quantum geometry based on graphs.
The main result is a surprising connection between Markov processes
and a generalized form of (noncommutative) Riemannian geometry.
Then, Majid introduces a ‘discrete Schrödinger process’ and shows
that it induces a Markov-like correction to the standard continuity
equation in quantum mechanics. In the last part, the author argues in
favour of a (quantum) geometric viewpoint on de Morgan duality and
discusses its consequences and potential application in the quest of
constructing a consistent theory of quantum gravity.

In today’s world filled with virtual objects, information plays an
incomparably greater role than before, when there were no computers
and so many objects generated by computers. In the text Information
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and physics Radosław Kycia and Agnieszka Niemczynowcz present,
in a way that is accessible to non-specialists, studies that shed light
on the relationship between the abstract image of information on
the one hand and its physical (or “real”) representative on the other.
The authors present a solution to the Maxwell paradox using Lan-
dauer’s principle. This principle links in a non-obvious manner the
computational processes to the production of measurable physical
consequences, i.e. to the generation of heat. In their presentation
the authors refer to their research on the general method of building
thermodynamic analogues of computer memory. In this method, the
authors find Galois connection, which makes category theory play
a key role in this research.

The mind–body dichotomy is one of the most profound philo-
sophical problems. Although the physical structure of the brain, along
with the basic mechanisms of its functioning, is systematically un-
ravelled by modern neurobiology, the problem of how does the brain
(or, rather, mind) ascribe meaning to the processed data is unsolved.
Steve Awodey and Michael Heller in their though-provoking article
The homunculus brain and categorical logic take inspiration from
the intricate duality between syntax and semantics, well established
within category theory. They propose a toy-model—a “homunculus
brain”—with neurons modeled by categories and axons by functors.
The homunculus mind, is, on the other hand, modeled by a category
of theories. The authors introduce the BRAIN and MIND categories
and show—using the results from categorical logic, including the
syntax-semantics relationship—how the structure enhanced by ad-
joint functors “Lang” and “Syn” enable the creation of meanings. As
the authors summarize in a typical categorical attitude of finding un-
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obvious, deep and far-reaching connections: “The categories BRAIN
and MIND interact with each other with their entire structures and, at
the same time, these very structures are shaped by this interaction.”

As the guest editors of this volume we would like to express our
sincere gratitude to all of the authors for their valuable contributions,
to the anonymous reviewers for detailed and instructive reviews, and
to the editor-in-chief of Philosophical Problems in Science, Paweł
Polak, for his kind support of this initiative. We are also very grateful
to the editorial secretary Piotr Urbańczyk for his commitment at
almost every stage of the preparation of this volume and to Roman
Krzanowski for the proofreading.

We acknowledge the financial support of the Minister of Science
and Higher Education under the programme for dissemination of sci-
ence [761/P-DUN/2019] towards the organization of the 23rd Kraków
Methodological Conference.
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Mathematics as a love of wisdom:
Saunders Mac Lane as philosopher

Colin McLarty
Department of Philosophy, Case Western Reserve University

Abstract
This note describes Saunders Mac Lane as a philosopher, and indeed
as a paragon naturalist philosopher. He approaches philosophy as
a mathematician. But, more than that, he learned philosophy from
David Hilbert’s lectures on it, and by discussing it with Hermann Weyl,
as much as he did by studying it with the mathematically informed
Göttingen Philosophy professor Moritz Geiger.

Keywords
naturalism, philosophy, mathematics, Aristotle.

Go, read, and disagree for yourself.
(Mac Lane, 1946, p.390)

This note describes Saunders Mac Lane as a philosopher, and
indeed as a paragon naturalist philosopher. Obviously he ap-

proaches questions in philosophy the way a mathematician would. He
is one. But, more deeply, he learned philosophy by attending David
Hilbert’s public lectures on it, and by discussing it with Hermann
Weyl, as much as he did by studying for a qualifying exam on it
with the mathematically informed Göttingen Philosophy professor
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18 Colin McLarty

Moritz Geiger (McLarty, 2007; 2020).1 Before comparing Mac Lane
to Penelope Maddy’s created naturalist, the Second Philosopher, we
relate him as a philosopher to Aristotle.

This is not to disagree with Skowron’s view of Mac Lane as a
platonist in ontology (Skowron, manuscript). This is about Mac Lane
on scientific and philosophic method. He understood philosophy very
much as Aristotle did: Philosophy is the love of wisdom, and every
science pursues wisdom and not mere facts. I do not claim Mac Lane
got the ideas from Aristotle. So far as I know, Mac Lane himself had
no interest in or opinion of Aristotle, though his teachers Weyl and
Geiger certainly talked of Aristotle.2

1. Aristotle on wisdom and science

In general the sign of knowing or not knowing is the ability to
teach, so we hold that art rather than experience is scientific
knowledge; some can teach, some cannot. Further, the senses
are not taken to be wisdom. They are indeed the authority for
acquaintance with all individual things, but they do not tell the
why of anything, for example why fire is hot, but only that it
is hot.
It is generally assumed that what is called wisdom is concerned
with the primary causes and principles, so that, as has been
already stated, those who have experience are held to be wiser

1 Mac Lane’s close contact with Paul Bernays in Göttingen deserves more attention.
But my research so far has not identified strong philosophic influence from Bernays.
See Section 3.
2 Browder and Mac Lane (1978) give a beautiful survey of mathematics which men-
tions Plato and Aristotle on ontology. However, the discussion of Plato and Aristotle
summarizes the longer discussion by Browder (1976).
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than those who merely have any kind of sensation, the artisan
than those of experience, the craft master than the artisan.
(Aristotle, Metaphysics 981f.)3

Here Aristotle says scientific knowledge is better than acquain-
tance, or even experience, in two related ways:

1. scientific knowledge can be taught, and
2. scientific knowledge gives the why of things.

He says wisdom deals with primary causes and principles. And those
are his touchstone for scientific knowledge: “We do not know or have
scientific knowledge of objects of any methodical inquiry, in a subject
that has principles, causes, or elements, until we are acquainted with
those and reach the simplest elements” (Physics 184a).

Throughout his career Mac Lane tied pedagogy to research and
research to craft. Among many examples see his early notes on pre-
senting mathematical logic to university students (Mac Lane, 1939),
and his impassioned argument that theoretical education prepared men
and women well to do the applied mathematics which he supervised
in World War II (Mac Lane, 1989; 1997).

Mac Lane also insists mathematical understanding includes know-
ing the reasons for a given theorem. Some proofs of a theorem may
reveal the reason, while other technically sufficient proofs will not
reveal the reason. In his book for philosophers, Mac Lane sketches
proofs for major theorems from many subjects, like linear algebra, or
complex analysis. He often describes several alternative proofs for a
single theorem and then eventually singles out one as giving the real
reason. That book is (Mac Lane, 1986) and some examples are on
pages 145, 189, 427, 455.

3 Translations of Aristotle here use “know” for oida, “scientific knowledge” for epis-
teme, and “acquaintance” for gnosis. Of course “wisdom” is sophia.



20 Colin McLarty

For me, though, the deepest connection between Aristotle’s and
Mac Lane’s loves of wisdom is how they say we gain this scientific
knowledge. Both believe in foundations, or “first principles” if you
prefer, but neither believes we start with those. Aristotle’s theoretical
demand of philosophy was a theoretical and practical demand in
mathematics for Mac Lane:

The natural way of [getting scientific knowledge] is to start
from the things which are more knowable and obvious to
us and proceed towards those which are clearer and more
knowable by nature; for the same things are not ’knowable
relatively to us’ and ’knowable’ without qualification. So in
the present inquiry we must follow this method and advance
from what is more obscure by nature, but clearer to us, towards
what is more clear and more knowable by nature. (Physics
184a)

Aristotle speaks of advancing from what is initially clear to us,
towards what is more knowable by nature. I am not sure if he believed
there was a final point where the absolutely first principles and sim-
plest elements are known so that they will never change. Mac Lane
certainly did not believe it for mathematics.

From his early work on field theory (Mac Lane and Schilling,
1939; 1940) and for the rest of his career Mac Lane often worked
to find more basic concepts in some part of mathematics. He and
Eilenberg spent over a decade collaborating on ever broader uses of the
concepts in their “General theory of natural equivalences” (Eilenberg
and Mac Lane, 1945). They meant that paper to be the only one ever
needed on this technical concept for group theory and topology, but it
became the founding paper of the whole field of category theory.

Only in the 1960s, after meeting graduate student Bill Lawvere,
did Mac Lane come to believe category theory could be a foundation
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for all mathematics. Even then, precisely because of all the concrete
mathematics that had gone into developing his ideas, Mac Lane in-
sisted this, and any foundation for mathematics, must be seen as
“proposals for the organization of mathematics” (Mac Lane, 1986,
p.406). The optimal organization (i.e. the optimal foundation) will
change as mathematics develops, and will help advance those develop-
ments. He warned that excessive faith in any “fixed foundation would
preclude the novelty which might result from the discovery of new
form” (Mac Lane, 1986, p.455).

2. Mathematics as a love of wisdom

Let us come to cases with one paradigmatically philosophical question,
and one paradigmatically mathematical. For Mac Lane these questions
are inseparable:

Q1 What are mathematical objects, and how do we come to know
them?

Q2 What are solutions to a Partial Differential Equation (PDE),
and how do we come to know them?

For Mac Lane Q2 can only be a specific case of Q1. For him, as for
Aristotle, basic questions of the special sciences are philosophy. They
cannot not be philosophy.

Let us be clear: A mathematician can learn a textbook answer to
Q2 without ever asking for a philosophy behind it. In just the same
way, a philosopher can learn the currently received answers to Q1

from philosophy books, without ever asking about live mathematics.
Admittedly the math textbook answers will be more stable over time
than the philosophically received answers. But that is not important.
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For Mac Lane, both of those ways of learning are failures of under-
standing. They are failures of philosophy. For him, an answer to either
one of those questions can only be valuable to the extent that you can
see what it is good for—for Mac Lane that cannot be either a purely
technical mathematical question or a purely academic philosophic
one. Think back to his work in World War II.

Mathematicians speak of solutions to PDEs in many ways:

• Smooth (or, sufficiently differentiable) function solutions.
• Symbolic solutions.
• Generalized function solutions (of various kinds. . . ).
• Numerical solutions. . .

These different senses of solutions are sought in very different ways.
There are well understood relations between them, but the relations
are not all obvious and in particular cases they may be quite difficult,
and important, to find.

Mac Lane’s war work certainly involved relating different kinds
of solutions to PDEs. Even when an equation has a known exact solu-
tion by an easily specified smooth function, applying it also requires
numerical solutions. The worker has to choose which aspects are best
handled in theory, so as to direct and optimize the calculations, and
when best to leave theory and begin calculating. Those choices are
rarely textbook work. They are often not clear cut at all. They require
exactly what Aristotle called the wisdom of the craft master. Namely,
they require grasping the why of each kind of solution. They require
knowing not only the technical definition of each kind of solution, but
what good each one is, and especially the good of their relations to
one another.

The craft master, having wisdom, knows the whys, can teach
them, and supervise work with them.
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As I write this, I imagine some practice-minded philosopher
challenging: “How are philosophies like logicism, formalism, and
intuitionism going to help anyone solve or apply a PDE?” Indeed.
This is why Mac Lane so often deprecates those philosophies. But
just to give one example, Mac Lane argued that formalism in Hilbert’s
hands was a step towards programmable computers. See Section 3.
Those unquestionably help solve PDEs.

3. The philosophy of mathematicians
in 1930s Göttingen

Wir dürfen nicht denen glauben, die heute mit philosophis-
cher Miene und überlegenem Tone den Kulturuntergang
prophezeien und sich in dem Ignorabimus gefallen. Für uns
gibt es kein Ignorabimus, und meiner Meinung nach auch
für die Naturwissenschaft überhaupt nicht. Statt des törichten
Ignorabimus heiße im Gegenteil unsere Losung: Wir müssen
wissen – wir werden wissen!

We must not believe those, who today, with philosophical
bearing and deliberative tone, prophesy the fall of culture and
accept the ignorabimus. For us there is no ignorabimus, and in
my opinion none whatever in natural science. In opposition to
the foolish ignorabimus our slogan shall be: We must know –
we will know! (Hilbert, 1930, p.385)4

Hilbert’s conclusion, Wir müssen wissen – wir werden wissen!, is
engraved on his tomb in Göttingen.

4 Before we try to defend or defeat Hilbert’s slogan as an assertion in academic
epistemology, it is in fact the most important statement in philosophy of mathematics of
the past 150 years. I use the translation by Ewald (2005, p.1164). Hilbert’s address was
broadcast on the radio and a recording is available at math.sfsu.edu/smith/Documents/
HilbertRadio/HilbertRadio.mp3.

math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.mp3
math.sfsu.edu/smith/Documents/HilbertRadio/HilbertRadio.mp3
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Mac Lane arrived in Göttingen just at the time Hilbert was pro-
moting this slogan. I do not recall Mac Lane quoting it in lectures or
conversations. He did not have to quote Hilbert. Everything Mac Lane
said illustrated this faith. As you can see in Mac Lane (1986; 2005),
or McLarty (2007), Mac Lane followed Hilbert’s mathematizing sci-
entific optimism, rather than the specific finitist program (often called
“formalism,” though not by Hilbert) of Hilbert’s famous On the Infi-
nite (1926). Mac Lane did see specific, productive mathematical value
in that program though, and rejected a criticism of it by Freeman
Dyson (Mac Lane, 1995).

Dyson supposed Hilbert seriously meant to reduce all mathemat-
ics to formal reasoning, and said “the great mathematician David
Hilbert, after thirty years of high creative achievement [. . . ] walked
into a blind alley of reductionism.” Specifically, Dyson claimed that
Hlbert “dreamed of” formalizing all mathematics, solving the decision
problem for this formal logic, and “thereby solving as corollaries all
the famous unsolved problems of mathematics.” Mac Lane replied:

I was a student of Mathematical logic in Göttingen in 1931-
1933, just after the publication of the famous 1931 paper by
Gödel. Hence I venture to reply [. . . ]. Hilbert himself called
this ‘metamathematics.’ He used this for a specific limited
purpose, to show mathematics consistent. Without this reduc-
tion, no Gödel’s theorem, no definition of computability, no
Turing machine, and hence no computers [. . . ]. Dyson simply
does not understand reductionism and the deep purposes it can
serve.

Mac Lane gives a concise expert review of these issues and places
them in the context he knew at the time they arose. He insists Hilbert
did not tie the slogan “we must know, we will know” to the decision
problem. Rather, Mac Lane says, “[Hilbert] held that the problems of
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mathematics can all ultimately be solved” without supposing meta-
mathematics will do it. Full disclosure: I admit that after long consid-
eration, drawing on Sieg (1999; 2013), I myself am unsure exactly
how Hilbert and/or Bernays intended their work on the decision prob-
lem at various times. But however that may be, Mac Lane understood
Hilbert this way. And this is Mac Lane’s own far from reductionist
faith, while recognizing reductionist methods for what they actually
have achieved in mathematics.

Mac Lane learned a lot in frequent discussions with Bernays.
But for now I have to say I see no larger trace of those discus-
sions in Mac Lane’s philosophy than is found in the letter on Dyson.
Mac Lane’s book on philosophy of mathematics is titled Mathematics:
Form and Function. But this is clearly “form” as Mac Lane learned
about it from talking with Weyl and studying under Geiger (McLarty,
2007). It does not refer to formalism in any sense related to Bernays.
Or, at least, so it seems to me. The reader is encouraged to go, read,
and disagree if they see something else.

4. Naturalism

The decisive feature marking Penelope Maddy’s Second Philosopher
as a naturalist is that:

[She] sees fit to adjudicate the methodological questions of
mathematics—what makes for a good definition, an acceptable
axiom, a dependable proof technique?—by assessing the effec-
tiveness of the method at issue as means towards the goals of
the particular stretch of mathematics involved. (Maddy, 2007,
p.359)
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Lots of mathematicians, and essentially all leading mathematicians,
do the same.5

The unusual thing about Mac Lane in this regard is that he was
explicitly tasked by the US government to evaluate mathematics re-
search and teaching methods in classified reports during World War
II and publicly after that.6 Those reports were explicitly directed to
various different specific short-term and long-term goals. All the vari-
ety he saw, and dealt with, left Mac Lane ever more deeply impressed
with the actual unity of the whole.

Precisely that background, along with his experience as Chair of
the Chicago Mathematics Department, made Mac Lane diverge from
another feature of Maddy’s Second Philosopher:

All the Second Philosopher’s impulses are methodological,
just the thing to generate good science [. . . ]. (Maddy, 2003,
p.98)

All Mac Lane’s impulses aim at producing good science and for this
reason they are not all methodological.

Mac Lane, like Aristotle, knows methods alone generate no sci-
ence. Besides evaluating methods of reaching goals, at least some
mathematicians must evaluate goals. For Aristotle, those should be
the craft masters, the wise. In his vivid words: “the wise should not
accept orders but give them; nor should they be persuaded, but the
less wise should” (Metaphysics 982a). We will see, though, Mac Lane
is less focused on command than that. He inclines more to another

5 If by axioms Maddy means specifically axioms of set theory then few mathematicians
ever learn those, let alone adjudicate them. Mac Lane is famously among those few.
6 See Mac Lane (1967; 1989) and Fitzgerald and Mac Lane (1977) and Steingart
(2011).
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passage: “those who are more accurate and more able to teach about
the causes are the wiser in each branch of knowledge” (Metaphysics
982a).

Because of his broad experience, especially evaluating both meth-
ods and goals for mathematics, Mac Lane cannot agree that “the goal
of philosophy of mathematics is to account for mathematics as it
is practiced, not to recommend reform.” (Maddy, 1997, p.161) Just
sticking to the mathematician philosophers we have already named:
Hilbert, Weyl, and Mac Lane all knew reform is integral to mathe-
matical practice. You cannot separate reform from practice if you try.
And all three made explicitly philosophic arguments for their recom-
mended reforms along with more technically mathematical ones.7

This is important for philosophy of mathematics.
The paradigm case for anti-revisionism in philosophy of math-

ematics is Brouwer’s intuitionism. Brouwer is by far the favorite
illustration of a revisionist, and is the sole example that the Stan-
ford Encyclopedia of Philosophy discusses under anti-revisionism in
the article “Naturalism in the Philosophy of Mathematics” (Paseau,
2016):

The mathematician-philosopher L.E.J. Brouwer developed
intuitionistic mathematics, which sought to overthrow and
replace standard (‘classical’) mathematics.

So it is important for philosophers to understand that the problem
with Brouwer, according to all our exemplars Hilbert, Weyl, and

7 Hilbert had sweeping success with his reforms. Among many philosophic works by
and on him see Hilbert (1923; 1930). Weyl (1918) advocated what Weyl took to be
Brouwer’s philosophy, while Weyl (1927; 1949) trace his eventual, regretful conclusion
that in fact Hilbert was right about this and Brouwer wrong.
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Mac Lane, is not that he had philosophical motives. It is that he was
wrong. Actually, for Mac Lane, Brouwer’s philosophy was at best
wrong. At worst it was “pontifical and obscure” (Mac Lane, 1939).

Immediately upon completing his doctorate in mathematics at Göt-
tingen, Mac Lane put a philosophy article in The Monist (Mac Lane,
1935). Fifty years later he wrote a book describing, as he told me,
what he wanted philosophers to know about math (Mac Lane, 1986).
There he asks about the large array of mathematics he surveyed: “How
does it illuminate the philosophical questions as to Mathematical truth
and beauty and does it help to make judgements about the direction of
Mathematical research?” (Mac Lane, 1986, p.409) There is a reason
he puts these questions together.

He asks about mathematical truth and beauty knowing very well
that few mathematicians want to pursue the question seriously, and
knowing philosophers who speak of it rarely know much of the wealth.
For Mac Lane both of those are failures of understanding and they
are nothing he means to promote.8 He means to promote mathemati-
cally informed philosophic pursuit of the question of mathematical
truth and beauty. And so he does of the question on the direction of
research. He seriously means to promote philosophic thought on that.
Of course he does not see philosophic thought as the sole preserve of
those with philosophy degrees. No more does he see philosophy of
mathematics as the sole preserve of those with math degrees. Mathe-
matics for Mac Lane, when pursued with full awareness of its worth,
is philosophy.

8 À propos, I consider Edna St. Vincent Millay’s poem “Euclid alone has looked
on Beauty bare” incredibly true to its topic, despite that she apparently studied no
mathematics beyond school textbooks based on bits of Euclid’s Elements.
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Creating new concepts in
mathematics: freedom and

limitations. The case of
Category Theory

Zbigniew Semadeni
Institute of Mathematics, University of Warsaw

Abstract
In the paper we discuss the problem of limitations of freedom in
mathematics and search for criteria which would differentiate the new
concepts stemming from the historical ones from the new concepts
that have opened unexpected ways of thinking and reasoning.

We also investigate the emergence of category theory (CT) and
its origins. In particular we explore the origins of the term functor
and present the strong evidence that Eilenberg and Carnap could have
learned the term from Kotarbiński and Tarski.

Keywords
categories, functors, Eilenberg-Mac Lane Program, mathematical
cognitive transgressions, phylogeny, platonism.

1. Introduction

The celebrated dictum of Georg Cantor that “The essence of math-
ematics lies precisely in its freedom” expressed the idea that in

mathematics one can freely introduce new notions (which may, how-
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ever, be abandoned if found unfruitful or inconvenient).1 This way
Cantor declared his opposition to claims of Leopold Kronecker who
objected to the free introduction of new notions (particularly those
related to the infinite).

Some years earlier Richard Dedekind stated that—by forming, in
his theory, a cut for an irrational number—we create a new number.
For him this was an example of a constructed notion which was a free
creation of the human mind (Dedekind, 1872, § 4).

In 1910 Jan Łukasiewicz distinguished constructive notions from
empirical reconstructive ones. He referred (with reservation) to
Dedekind’s statement and pointed out that a consequence of our
“creation” of those notions is the spontaneous emergence of countless
relations which no more depend on our will (Łukasiewicz, 1910).

Until the discovery of non-Euclidean geometries, geometry was
regarded as an abstraction of the spatial reality. The freedom of cre-
ation in geometry was limited by this reality. Hilbert advocated a
formal point of view, broadening the freedom of choosing the ax-
ioms, while Poincaré maintained that the axioms of geometry are
conventions.

Clearly, the freedom of mathematics is limited by logical con-
straints. At the same time, logical inference yields deep meaning to
mathematics. As Michał Heller put it, “If I accept one sentence, I
must also accept another sentence. Why must I? Who forces me?
Nobody. Yet, I must. Generally, we bear badly any restrictions of our
liberty, but in the case of mathematical deduction inevitability of the

1 The italics in the original sentence “Das Wesen der Mathematik liegt gerade in ihrer
Freiheit” are Cantor’s. The first version was published in 1879, reprinted in (Cantor,
1883, p.34), discussed by Ferreirós (1999, p.257).
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conclusion gives us the feeling of safety (I have not deviated from the
way) and of the accompanying intellectual comfort, sometimes even
great joy” (Heller, 2015, p.21).

A mathematician trying to prove a theorem knows the feeling of
an invisible wall which blocks some intended arguments. Also new
concepts must be consistent with earlier ones and must not lead to
contradiction or ambiguity. Moreover, in mathematical practice, only
intersubjective mental constructions are accepted.

The purpose of this paper2 is to look for restraints and patterns
in the historical development of mathematics.3 Some types of paths
will be distinguished, first generally, and then they will be used to
highlight some features of the rise of category theory (CT).

Michael Atiyah, in his Fields Lecture at the World Mathematical
Year 2000 in Toronto, expressed his view that

it is very hard to put oneself back in the position of what it
was like in 1900 to be a mathematician, because so much of
the mathematics of the last century has been absorbed by our
culture, by us. It is very hard to imagine a time when people did
not think in those terms. In fact, if you make a really important
discovery in mathematics, you will then get omitted altogether!
You simply get absorbed into the background. (Atiyah, 2002,
p.1)

This statement may appear startling, as the mathematical meaning
of a text from around 1900 is generally believed to be time-proof.
Yet what Atiyah had in mind was not the meaning of published
texts—definitions, theorems and proofs— but the way mathemati-
cians thought at that time.

2 The present paper is based on a talk delivered at XXIII Kraków Methodological
Conference 2019: Is Logic a Physical Variable?, 7-9 November 2019.
3 The significant question of degree of freedom in mathematical conceptualization of
physical reality is not considered here.
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It was 75 years ago when the celebrated paper by Eilenberg
and Mac Lane was published.4 This event marked the rise of category
theory (CT). As the development of mathematics accelerated in the
second half of the 20th century, it may be hard to fully imagine how
mathematicians thought in 1945. Their definitions, theorems and
comments are clear, but one should be aware that a reconstruction of
their ideas, their thinking may be specifically biased by our present
understanding of the mathematical concepts involved.

2. Background conceptions

The main ideas of this paper—which includes a very wide spectrum of
examples, from ancient Greek mathematics to modern, from children’s
counting to CT—are the following:

• A mathematical concept, no matter how novel, is never indepen-
dent of the previous knowledge; it is based on a reorganization
of existing ideas.

• A radically new mathematical idea never germinate in some-
body’s mind without a period of incubation, usually a lengthy
one.

• There is a long distance to cover between a spontaneous, un-
conscious use of a mathematical idea or structure in a concrete
setting, and a conscious, systematic use of it (Piaget and García,
1989, p.25).
• A person who has achieved a higher level of mathematical

thinking is often unable to imagine thinking of a person from

4 Mac Lane earlier in his life, in particular in (Eilenberg and Mac Lane, 1945) and
(Mac Lane, 1950) wrote his name as MacLane. Later he began inserting a space into
his surname, in particular in (Mac Lane, 1971).
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another epoch or of a present learner and, consequently, may
unconsciously attribute to him/her an inappropriate (too high
or too low) level of thinking.

Transgressions

A mathematical cognitive transgression (or briefly: a transgres-
sion) is defined as crossing—by an individual or by a scientific
community—of a previously non-traversable limit of own mathe-
matical knowledge or of a previous barrier of deep-rooted convictions
(Semadeni, 2015). Moreover, it is assumed that:

1. the crossing concerns a (broadly understood) mathematical
idea and the difficulty is inherent in the idea,

2. the crossing is critical to the development of the idea and related
concepts,

3. it is a passage from a specified lower level to a new specified
upper level,

4. the crossing is a result of conscious activity (the activity need
not be intentional and purposely orientated towards such cross-
ing; generally such effect is not anticipated in advance and may
even be a surprise).

In the history of mathematics there were numerous transgres-
sions of different importance, some great ones and many “mini-
transgressions”. Usually they were not single acts—they involved
a global change of thinking which matured for years or even gener-
ations and they were based on the work of many people. In ancient
times two transgressions were the most significant:
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• The transition from practical dealing with specific geometric
shapes to deductive geometry.

• The celebrated discovery (in the 5th century BC) that the diago-
nals of a square are incommensurable with their sides, that they
are άλογος (a-logos), without a ratio, irrational (in modern set-
ting, foreign to Greek thinking, it was the irrationality of

√
2)

(Baszmakowa, 1975, pp.80-81). The Pythagorean paradigm
was undermined by this απορία (aporia). Their understanding
of mathematics was eroded. However, nothing certain is known
about this discovery. Stories presented in popular books are
based on doubtful legends from sources written seven or eight
centuries later (Knorr, 1975, p.21, 51). This incommensurabil-
ity could not be a single discovery by an individual. It must
have been a lengthy process. Never in the historical develop-
ment of mathematics such a major change occurred in a short
time.

In modern history there were many transgressions. Let us list some of
the best known:

• Acceptance of negative numbers.
• The transition from potential infinity (infinity at a process level)

to the actual infinity (infinity as an object).
• The emergence of projective geometry.
• The discovery of non-Euclidean geometries.

We will discuss the case of CT, arguing in particular that creating
the theory of elementary topoi in CT should be regarded as a major
transgression.
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Phylogeny and ontogeny

The term phylogeny refers here to the evolutionary history of
mathematics (or rather to its modern reconstructions), from ancient
times on. Ontogeny denotes the development of basic mathematical
concepts and structures in the mind of an individual person, from early
childhood. Phylogeny and ontogeny are in some sense complementary
descriptions (Freudenthal, 1984; Piaget and García, 1989, pp.4-29).

In case of mathematics, the oft-quoted phrase: ontogeny recapit-
ulates phylogeny implies that one can learn from the history of old
mathematics for the sake of present teaching. The history of mathe-
matics sometimes gives useful hints, e.g. one may argue that since
the historical process of forming the general concept of a function
took centuries (from Descartes, if not much earlier, to Peano and
Hausdorff), we should not expect that a secondary school student can
grasp it—learning Dirichlet’s description—after a few lessons. The
general concept of the function was not yet quite clear to mathemati-
cians of the first half of the 19th century (Lakatos, 1976, Appendix 2;
Youschkevitch, 1976; Ferreirós, 1999, pp.27–30).

On the other hand, the idea that ontogeny recapitulates phylogeny
may be misleading. Piaget always stressed that arithmetic cognition
results from logico-mathematical experience with concrete objects,
pebbles say, and is educed from the child’s actions rather than from
heard words. It is abstracted from a coordination of intentional mo-
tions and accompanying thoughts. Nevertheless, Piaget was in favour
of the phylogeny-ontogeny parallelism and reasoned roughly as fol-
lows. Since one-to-one correspondence preceded numerical verbal
counting in the very early periods of human civilization (evidenced
by artefacts such as notched bones and also found in crude unlettered
tribes), the same should apply to children. Cantor’s theory of cardinal
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numbers confirmed this thinking (Beth and Piaget, 1966, pp.259–260).
Consequently, Piaget and many educators insisted on one-to-one cor-
respondence as a foundation of early school arithmetic, neglecting
the fact that nowadays children learn number names early, often to-
gether with learning to speak, and moreover counting is now deeply
rooted culturally. Research evidence shows that counting, rather than
one-to-one correspondence, is a basis of the child’s concept of num-
ber (Gelman and Gallistel, 1978, pp.77–82). In this way the phy-
logeny–ontogeny parallelism adversely affected early mathematics
education in the time of the ‘New Math’ movement.

Hans Freudenthal, in the context of mathematics, suggested the
converse idea: What can we learn from educating the youth for under-
standing the past of mankind? This reverses the traditional direction
of inference in the phylogeny–ontogeny parallelism. In particular, one
may ask whether contemporary knowledge of the difficulties in the
transition from the concrete to more abstract mathematical reasoning
of children may be helpful in better understanding of limitations of our
reconstructions of the development of the early Greek mathematics.

In the sequel, certain aspects of the development will be traced
both in phylogeny and in ontogeny, inextricably intertwined with the
the mathematical questions themselves.

Platonizing constructivism in mathematics

The theoretical framework of the paper is platonizing construc-
tivism in mathematics (Semadeni, 2018). It is assumed that:
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• each of the three major positions in the philosophy of math-
ematics from the beginning of the 20th century: platonism,
constructivism, formalism describes some inherent, comple-
mentary features of mathematics;

• these three major positions can be reconciled provided that they
are regarded as descriptive, as an account of some inherent
features of mathematics, and not normative, i.e., when one
leaves out the eliminating words (as ‘only’, ‘oppose’) which
explicitly deny other standpoints. Moreover, various versions
of the three positions often overlap.

In the sequel, the term constructivism will not be understood as in
papers on foundations of mathematics, but rather in a way akin to
its meaning in research on mathematics education, related to post-
Piagetian psychological versions of constructivism. Briefly, one as-
sumes here that humans construct mathematical concepts in their
minds and discover their properties. A concept develops its necessary
structure as a consequence of its context and—in the long term—
becomes cristalline in the sense of David Tall (2013, p.27); then its
properties appear independent of our will. This phenomenon may be
traced both in phylogeny and in ontogeny. Moreover, in each essential
progression, new mental structures are build on the preceding ones
and are always integrated with previous ones (Piaget and García, 1989,
pp.22–29).

By platonizing constructivism we mean an analysis—in construc-
tivistic terms—of sources and consequences of the platonistic atti-
tude of a majority of mathematicians and contrasting them with the
well-known difficulties of consistent platonism in the philosophy of
mathematics.
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3. Developmental successors

After the introductory examples we now look for ways to distinguish
between:

• mathematical concepts which—historically—were natural suc-
cessors to previous ones,

• mathematical concepts which could be conceived and defined
only after opening new paths of thought and reasoning.

The following metaphorical labels will be used: onward development,
branching-off, upward development, downward development. These
labels will be interpreted with examples. We do not expect to find
clear criteria, but the ensuing discussion may be illuminating.

The emergence of numerals in the Late Stone Age is evidenced
by tally marks (in the form of notched bones). Ethnologists have
found that early tribes had only two counting words: one and two,
followed by many. Also in present Indo-European languages these
two numbers and their ordinal counterparts are linguistically different
from the following numbers. It has been suggested that the proto-
Indo-European number *trei (three) was derived from the verb *terh
(meaning: pass); thus, the word three is related to trans. This may be
a hint of a very ancient mental obstacle between numbers two and
three.

One may conjecture that after the passage from 2 to 3 there was
no notable obstacle to gradual development of unlimited counting.
Of course, the actual development took centuries, if not millennia.
Anyway, for present children there is no hurdle between 2 and 3, as
they are taught counting very early. Moreover, counting starts to make
sense with three items.
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Onward development

Onward development of indefinite counting includes its develop-
mental successors: simple addition of natural numbers (which devel-
ops through a stage called count all and then a more advanced stage
count on), subtraction (as taking away), multiplication, division (orig-
inally there are two kinds of it: equal sharing and equal grouping),
and even simple powers, all within some range of natural numbers.

These concepts are included in the onward development of count-
ing, by virtue of the following features:

• no branching: each new concept naturally comes after the
previous ones;

• ontological stability: each concept (e.g., number 17 or the
product 3× 6), remains essentially the same object, although
the related ideas are enriched after each extension of the scope
of arithmetic and—in the historical development—are subject
to evolutionary changes.

The conception of developmental successors, outlined here, does
not take into account a relative difficulty of concepts; what is crucial
is whether these concepts follow the previous lines of thinking.

Branching-off

The concept of “branching-off” arises from a negation of the first
requirement in the description of an onward development. An example
of it are fractions, which branch off from natural numbers; it is not
onward development, although there are many ties between natural
numbers and fractions.
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Fractions could be introduced to children in two ways. In the
first, some idealized whole is divided into m equal parts and then n
of them are taken. In the second, n whole things are equally divided
into m parts. They are two main aspects of the concept of a fraction.
For instance, 3

4 of pizza may be obtained by cutting it into 4 parts
and taking 3 such parts (thus 3

4 = 3× 1
4 ). A more advanced way of

thinking of 3
4 is 3 divided by 4; the latter may be explained with the

example of 3 pizzas to be divided among 4 persons.
The distinction looks quite elementary. Yet, it was significant in

the phylogeny of fractions. First procedure is akin to that of ancient
Egyptians, the second—to Greek ratios; both were inherited by Arabic
mathematicians. In the ontogeny the two ways are always present,
but not necessarily noticed. The following reminiscence by William
Thurston (1946-2012), written 8 years after he had received Fields
Medal, describes his discovery of the identification of previously
different objects.

I remember as a child, in fifth grade, coming to the amazing (to
me) realization that the answer to 134 divided by 29 is 134/29
(and so forth). What a tremendous labor-saving device! To
me, ‘134 divided by 29’ meant a certain tedious chore, while
134/29 was an object with no implicit work. I went excitedly
to my father to explain my major discovery. He told me that of
course this is so, a/b and a divided by b are just synonyms. To
him it was just a small variation in notation (Thurston, 1990,
p.848).

The fraction a
b becomes identified with the result of division a ÷ b

and—in this synthesis—they both form a single mathematical object.
Philosophically, however, it is an ontological change: two different
beings, results of two different mental constructions, become regarded
as a single one.
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Onward branching-off can be traced in many parts of mathemat-
ics. Calculus branches off from a theory of the field of real numbers
(axiomatic or based on a construction). Infinite sequences of real num-
bers branch off from elementary algebra of real numbers. Limits of
sequences branch off from general theory of sequences. These exam-
ples vividly show that the question of distinguishing branching-off
from onward development is delicate, as the criteria are far from being
precise, but it may contribute to better understanding the historical
development of mathematics.

Upward development and downward development

By upward development of a piece of mathematics we mean
passing from some concepts and relations between them to a more
abstract version of them. Examples:

• Transition from practical addition (verbalized as, e.g., two and
three make five) to symbolic version (e.g., 2 + 3 = 5) took
centuries (the sign + appeared in some 15th century records;
the first occurrence of the equality sign = was found in a text
by a Welsh mathematician Robert Recorde from 1557).

• Transition from the space Rn to an axiomatically given vector
space over R.

• Transition from a vector space over R to a vector space over a
field.

• Transition from group theory to the category Grp.
• Transition from a category to a metacategory (in the sense of

(Mac Lane, 1971, pp.7–11)).
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Downward development is—in some sense—an inverse process,
to more concrete questions or to a lower level of abstraction, so the
above examples may be used the other way round. Also some typical
applications of mathematics may be included here, e.g., the passage
from abstract Boolean algebras to a description of certain types of
electrical circuits, as conceived by Claude Shannon (1936).

In the 20th century the mathematics grew rapidly and the upward
development became much easier mentally as a result of both: a
general change of the attitude of mathematicians toward abstraction
and the routine of expressing all concepts in the language of set
theory. Branching-off were so frequent that the above metaphors are
of little use. There is, however, a notable exception: a new theory
which opened a new direction of thinking, so its beginnings may be
discussed in a way akin to that used with respect to distant past.

4. The rise of category theory (CT)

A very special feature of CT is that it has a pretty precise date of
its official birth: the publication of the paper by Samuel Eilenberg
and Saunders Mac Lane (1945). It was presented at a meeting of the
American Mathematical Society in 1942 and published in 1945.

According to the Stanford Encyclopedia of Philosophy, CT “ap-
peared almost out of nowhere”. Not quite so. As in any mathematical
theory, some CT ideas had been conceived much earlier, particularly
in algebraic topology, and some of them can be traced to the 19th

century.
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Many conceptual transformations—either explicit and well recog-
nized or used implicitly, without awareness—contributed to the rise
of CT. Going back, a significant factor was the historic development
of the mathematical concept of a function.

Until the beginning of the 19th century, a general symbol for a
function (f or φ) was almost non-existent (Youschkevitch, 1976).
A significant step toward CT was the general notion of a mapping
introduced by Dedekind in 1888. In his Enklärung (explanation)
he did not define the concept of Abbildung φ (literally: image or
representation) from a set (System) S into a set S′, but interpreted
it generally as an arbitrary law (Gesetz) according to which to each
element s there corresponds (gehört) a certain thing (Ding) S′ = φ(s),
called the image (Bild) of s. He also defined a composed mapping
(zusammengesetzte Abbildung) ϑ(s) = ψ(s′) = ψ(φ(s)) of two given
ones, denoted as φ.ψ or φψ, defined injective mappings (ähnlich
or deutlich), the inverse mapping and proved their main properties
(Dedekind, 1888, §2–4; Ferreirós, 1999, p.88–90, 228–229).

Emmy Noether in her lectures in the 1920s emphasised the role of
homomorphisms in group theory. Before her, groups were understood
as generators and relations (in modern terms, as quotients of free
groups). She also argued that the homology of a space is a group, is
an algebraic system rather than a set of numbers assigned to the space.
Her lectures and the lectures of Emil Artin formed a basis for the
celebrated book by van der Waerden (1930) on modern algebra. This
current of thought led to CT.

Generally, in the symbol of the type f(x), the part f was always
understood as fixed and xwas a variable. At the end of the 1920s, how-
ever, in functional analysis and related fields, a new way of thinking
emerged. In certain situations the roles of symbols in f(x) reversed:
the point x was regarded as fixed while the function f became a vari-
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able (as an element of a function space), e.g., x ∈ [0, 1] was fixed and
f was a variable in the space C([0, 1]) of continuous functions on the
interval [0, 1]. In this new role, the point x became a functional δx on
C([0, 1]). Such a change of the roles function-element became cru-
cial, e.g., in the Potryagin duality of locally compact abelian groups
(Hewitt and Ross, 1963) and in Gelfand’s theory of commutative
Banach algebras. It was also used by Eilenberg and Mac Lane in their
first example (finite dimensional vector spaces and their dual spaces)
motivating the concept of a natural equivalence.

A crucial example of a contravariant functor was the adjoint T ∗

of a linear operator T on a Hilbert space, introduced in 1932 by John
von Neumann.5

According to Mac Lane, abstract algebra, lattice theory and uni-
versal algebra were necessary precursors for CT. However, he also
suggested that certain notational devices preceded the definition of
a category. One of them was the fundamental idea of representing a
function by an arrow f : X → Y , which first appeared in algebraic
topology about 1940, probably introduced by Polish-born topologist
Witold Hurewicz (Mac Lane, 1971, p.29; 1988, p.333). Originally, it
looked as just another symbol, but from a later perspective the use
of such symbol was one of the key changes. Thus, a notation (the
arrow) led to a concept (category). Such new symbols got absorbed
into the background of mathematical thinking, and was later used
as something obvious. Together with commutative diagrams, which
were probably also first used by Hurewicz, they paved the way to CT.

5 Mac Lane (1988, p.330) tells a story of how Marshall Stone advised von Neumann to
introduce the symbol T ∗ and how it changed the publication. He also mentions a fact
which may interests philosophers: in 1929 von Neumann lectured in Göttingen and
presented his axiomatic definition of a Hilbert space, while David Hilbert—listening
to it—evidently thought of it as of the concrete space ℓ2, not in the axiomatic setting.
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Mac Lane often accented two features of mathematics: compu-
tational and conceptual. He noted that the initial discovery of CT
came directly from a problem of calculation in algebraic topology
(Mac Lane, 1988, p.333).

Eilenberg and Mac Lane were aware that they introduced very
abstract mathematical tools, which did not fit any algebraic system
in the Garrett Birkhoff’s universal algebra. It might seem too abstract
and was certainly off beat and a “far out” endeavour. Although it was
carefully prepared, it might not have seen the light of day (Mac Lane,
2002, p.130).

The origin of the term functor

Mac Lane has written Categories, functors, and natural transfor-
mations were discovered by Eilenberg–Mac Lane in 1942 (Mac Lane,
1971, p.29). The word “discovered” may be regarded as an indication
of a hidden Platonistic attitude of Mac Lane, in spite of his verbal
declarations against Platonism (Mac Lane, 1986, pp.447–449; Król,
2019; Skowron, manuscript). He also wrote:

Now the discovery of ideas as general as these is chiefly the
willingness to make a brash or speculative abstraction, in this
case supported by the pleasure of purloining words from the
philosophers: “Category” from Aristotle and Kant, “Functor”
from Carnap (Logische Syntax der Sprache) (Mac Lane, 1971,
pp.29–30).

This sentence has been taken very seriously by several authors. How-
ever, the way it was phrased suggests that it was rather intended to be a
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delicate joke.6 Attributing the origin of the term category to Aristotle
and Kant is clear, although in 1899 René-Louis Baire (in his Thèse)
introduced—in another context—the word category to mathematics.7

Concerning the origin of the term functor in CT, one may recall the
following facts:8

• In Rudolf Carnap’s book Abriss der Logistik (Carnap, 1929)
the term “Funktor” does not appear.

• In 1929 the Polish term “funktor” was used in propositional cal-
culus by Tadeusz Kotarbiński in his book (Kotarbiński, 1929).

• Alfred Tarski often emphasised that Kotarbiński had been his
teacher (Feferman and Feferman, 2004, part 2).

• Carnap met Tarski in Vienna in February 1930 and visited
Warsaw in November 1930; he learned much from Tarski.

6 Let us note that the noun brash means a mass of fragments; according to Cambridge
International Dictionary of English (1995), the adjective brash is disapproving, refer-
ring to people who show too much confidence and too little respect, while Webster’s
New World Dictionary (1984) lists—as meanings of brash—also hasty and reckless,
offensively bold. On the other hand, the word purloining means stealing or borrowing
without permission. Such a comment (with the word pleasure) by Mac Lane concerning
CT could not be serious. On the other hand, in 2002 Mac Lane came back to Carnap,
adding: “Also the terminology was largely purloined: “category” from Kant, “natural”
from vector spaces and “functor” from Carnap. (It was used in a different sense in
Carnap’s influential book Logical Syntax of Language; I had reviewed the English
translation of the book (in the Bulletin AMS 1938) and had spotted some errors;
since Carnap never acknowledged my finding, I did not mind using his terminology)”
(Mac Lane, 2002, pp.130–131).
7 A subset A of a topological space X is called a set of first category (un ensemble de
première catégorie) in X iff A is the union of a countable family of nowhere dense
sets; otherwise it is a set of the second category (Menge erster und zweiter Kategorie).
The celebrated Baire category theorem states, in a generalized form, that a complete
metric space is not a set of the first category (Hausdorff, 1914, p.328; Kuratowski,
1933, § 10). The clumsy term set of the first category was later replaced by the term
a meager set (Kelley, 1955, p.201). In the 1930s Baire category theorem was a very
popular tool in the Warsaw school of topology, so Eilenberg must have known it.
8 The author is indebted to Professor Jan Woleński for the relevant information.
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• In 1933 Tarski, in the Polish version of his famous paper On
the concept of truth in formal languages Tarski (1933) used
the term “funktor” and mentioned that he owed the term to
Kotarbiński.

• Carnap used the term “Funktor” in his book (1934) (quoted by
Mac Lane) in a sense more general than that of Kotarbiński
and Tarski.

• Eilenberg studied mathematics in Warsaw from 1930. In 1931
he attended Tarski’s lectures on logic (Feferman and Feferman,
2004, part 3 and 12). He left Warsaw in 1939.

This evidence strongly suggests that both Carnap and Eilenberg
could have learned, independently, the term from Kotarbiński and
Tarski.

Was the original CT an onward development of previous
mathematical theories?

Using a metaphor explained above, one may argue that the def-
inition of a category and of a functor were within a major onward
development of part of mathematics of the first half of the 20th century,
that is set theory, algebra, topology etc. Indeed, for a person working
in group theory, say, a natural continuation should be to think of all
groups, their homomorphisms, isomorphisms, and the composites as
of a single whole: group theory. Similarly one could think of vector
spaces with linear maps as of another whole. Some analogies between
theories were obvious. Moreover, the axioms of CT are reminiscent of
those of semigroup theory. The concept of a covariant functor was a
natural analogue of homomorphisms of algebras. Contravariant func-
tors had been present in various duality theories (e.g., in Pontryagin’s
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duality mentioned above). CT provided general concepts applicable to
all branches of abstract mathematics, contributed to the trend towards
uniform treatment of different mathematical disciplines, provided op-
portunities for the comparison of constructions and of isomorphisms
occurring in different branches of mathematics, and may occasion-
ally suggest new results by analogy (Eilenberg and Mac Lane, 1945,
p.236).

The great achievement of Eilenberg and Mac Lane was the idea
that a formalization of various evident analogies was worth system-
atizing and publishing. The initial neglect of the paper of Eilenberg
and Mac Lane (1945) by mathematicians was very likely a result
of the fact that it was regarded as a long paper within onward de-
velopment of known part of mathematics, with many rather simple
definitions and examples, tedious verification of easy facts, and no
theorem with an involved proof. Ralf Krömer, in his book on the
history and philosophy of CT, has outright stated that Eilenberg and
Mac Lane needed to have remarkable courage to write and submit for
publication the paper almost completely concerned with conceptual
clarification (Krömer, 2007, p.65).

A novelty of (Eilenberg and Mac Lane, 1945, p.272), which at
first appeared insignificant, was regarding elements p1, p2 of a single
quasi-ordered set P as objects of a category, with a unique morphism
p1 → p2 iff p1 ≤ p2 and no morphisms otherwise. This opened
a way to a series of generalizations, in particular regarding certain
commutative diagrams as functors on small categories.

One may argue that this achievement was still within onward
development of CT as it was within the scope of previous knowledge.
Let us recall that the difficulty and the originality of a theorem are not
taken into account; what is crucial is whether the concepts involved
are natural extension of the previous knowledge and thinking.
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The category axioms represent a very weak abstraction (Goldblatt,
1984, p.25). In spite of this fact, a few years later the conceptual
clarification turned out to be highly effective in the book Foundations
of Algebraic Topology written by Eilenberg together with Norman
Steenrod (1952). The latter admitted in a conversation that the 1945
paper on categories had a more significant impact on him than any
other research paper, it changed his way of thinking.

The Eilenberg-Mac Lane Program

This program has been formulated as follows:

The theory [. . . ] emphasizes that, whenever new abstract ob-
jects are constructed in a specified way out of given ones, it
is advisable to regard the construction of the corresponding
induced mappings on these new objects as an integral part of
their definition. The pursuit of this program entails a simul-
taneous consideration of objects and their mappings (in our
terminology, this means the consideration not of individual
objects but of categories). [. . . ]

The invariant character of a mathematical discipline can be
formulated in these terms. Thus, in group theory all the ba-
sic constructions can be regarded as the definitions of co- or
contravariant functors, so we may formulate the dictum: The
subject of group theory is essentially the study of those con-
structions of groups which behave in a covariant or contravari-
ant manner under induced homomorphisms. More precisely,
group theory studies functors defined on well specified cate-
gories of groups, with values in another such category. This
may be regarded as a continuation of the Klein Erlanger Pro-
gramm, in the sense that a geometrical space with its group of
transformations is generalized to a category with its algebra
of mappings.
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[...] such examples as the “category of all sets”, the “category
of all groups” are illegitimate. The difficulties and antinomies
are exactly those of ordinary intuitive Mengenlehre; no es-
sentially new paradoxes are involved. [...] we have chosen to
adopt the intuitive standpoint, leaving the reader free to insert
whatever type of logical foundation (or absence thereof) he
may prefer. [...]

It should be observed first that the whole concept of a cate-
gory is essentially an auxiliary one; our basic concepts are
essentially those of a functor and of a natural transformation.
[...] The idea of a category is required only by the precept that
every function should have a definite class as domain and a
definite class as range, for the categories are provided as the
domains and ranges of functors. (Eilenberg and Mac Lane,
1945, p.236–237, 246–247)

The quoted comparison of CT to the celebrated program of Felix
Klein shows vividly that the authors regarded their work as significant.
An important novelty of (Eilenberg and Mac Lane, 1945) was to use
the same letter to denote both: the object component of a functor and
its morphism component. This had not been a common practice, even
when these correspondences were dealt with in a single paper. This
novelty and the whole program fit well Atiyah’s conception (quoted
above) of ideas absorbed by mathematicians’ culture.

CT is both a specific domain of mathematics and at the same time
a conceptual framework for a major part of modern theories.

5. The amazing phenomenon of unexpected
branchings-off in CT

Up to this point CT might be regarded as being within onward de-
velopment of earlier theories: algebra, topology, functional analysis.
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However, a branching-off in (Eilenberg and Mac Lane, 1945) is the
concept of a natural equivalence (central in the title of the paper),
with an essential use of commutative diagrams.9 It was a completely
new idea, but its initial impact was limited.

After 1945 CT—as a general theory—lay dormant till the emer-
gence of significant new concepts and a breaking series of major
branchings-off in the second half of the 1950s. One of their outstand-
ing features was a new type of a definition, formulated in the form of
a unique factorization problem.

First such explicit definition appeared in the paper by Pierre
Samuel (1948), a member of the Bourbaki group, on free topologi-
cal groups, albeit it was still in the language of set theory, without
arrows. Two years later commutative diagrams were demonstrated as
a convenient tool in such problems by Mac Lane (1950). The concept
of a dual category, formulated by Eilenberg and Mac Lane in (1945,
p.259) and further developed by Mac Lane (1950), had its concep-
tual roots in various duality theories, particularly in that of projective
geometry.

The product of two categories was an analogue of that for groups
and various algebras. Mac Lane analysed the concept of duality,
stressed diagrammatic dualities of various pairs of concepts and pre-
sented the definitions of direct and free products in group theory (later
generalized to the concepts of categorial products and coproducts,
respectively).

9 It is not clear why Eilenberg and Mac Lane refrained from setting the concept in the
general form of a natural transformation (examples abounded). Perhaps they felt they
should not pursue a still more general setting without accompanying results.



56 Zbigniew Semadeni

Ametamorphosis from Eilenberg–Mac Lane Program to
mature CT

A turning point in the development of CT was the seminal pa-
per by Daniel Kan (1958) on adjoint functors. In much the same
time period, independently, several closely related concepts and re-
sults were worked out: representable functors, universal morphisms,
Yoneda lemma, various types of limits and colimits (Mac Lane, 1988,
pp.345–352). Special cases of them had a long earlier history in spe-
cific situations in algebra and topology (e.g., Freudenthal’s theorems
on loops and suspensions in homotopy theory proved in 1937). This
confirms a known phenomenon that mathematicians may use an idea
spontaneously, without being conscious of it in a more abstract setting.

Mac Lane (1950) also opened the way to the study of categories
with additional structure, which some years later developed to the
study of abelian categories. This topic was developed—in a remark-
ably short time—due to the work of Alexandre Grothendieck, David
Buchsbaum, Pierre Gabriel, Max Kelly and authors of two mono-
graphs: Peter Freyd (1964) and Barry Mitchell (1965).

Within 20 years CT, originally conceived as a useful language
for mathematicians, became a developed, mature theory, something
totally unexpected by its founders.

Set theory without elements

The results of the work of William Lawvere turned out to be
not only a new branch of CT, but also opened new perspectives in
mathematics, logic, foundations of mathematics, and philosophy. In
his Ph.D. thesis at Columbia University in New York, supervised by
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Eilenberg (defended in 1963, known from various copies, with full text
published 40 years later) many new ideas were presented, including a
categorical approach to algebraic theories (Lawvere, 1963).

Lawvere also tackled the general question as to what conditions
a category must satisfy in order to be equivalent to the category Set.
The idea looked analogous to the so-called representation theorems,
i.e., propositions asserting that any model of the axioms for a certain
abstract structure must be (in some prescribed sense) isomorphic to
a specific type of models of the theory or to one particular concrete
model.10 However, Lawvere’s case was unique and controversial in
the sense that his ‘sets’ were conceived without elements. The theory
did not have the primitive notion “element of”. And it did work.

Specifically, Lawvere characterized Set (up to equivalence of
categories) as a category C with the following: an initial object 0;
a terminal object 1 (which gives rise to elements of A defined as
morphisms from 1 to A); products and coproducts of finite families of
objects; equalizers and coequalizers; for any two objects there is an
exponential; existence of a specific object N with morphisms 0: 1→
N and s : N → N yielding the successor operation s on N and a
simple recursion for sequences; axiom that 1 is a generator (if parallel
morphisms f, g are not equal, then there is an element x ∈ A such that
xf ̸= xg); axiom of choice; three additional elementary axioms of
this sort (everything in the language of CT). This was augmented with
one non-elementary axiom: C has products and coproducts for any
indexing infinite set. A coproduct of copies of 1 played the role of a set
(Lawvere, 1964; Mac Lane, 1986, pp.386–407; 1988, pp.341–345).

10 The oldest theorems of this type are: Cayley’s theorem that every (abstract) group is
isomorphic to a group of bijections of a set; Kuratowski’s theorem that every partially
ordered set is order-isomorphic to a family of subsets of a set, ordered by inclusion;
theorem that every group with one free generator is isomorphic to Z. Analogous
examples are known in many theories.
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The point was not to avoid membership relation completely, but
(instead of taking as the starting point the primitive notions of set,
element and membership ∈) function may be taken as a primitive
notion of the theory (with suitable axioms, using elementary logic,
but avoiding any reference to sets) and then one derives membership
and most concepts of set theory as a special case from there.

In the second half of the 1960’s Lawvere opened a way to a new
theory of elementary toposes (called also elementary topoi, with Greek
plural τ óπoι of the noun τ óπoς). Unexpected territories of mathemat-
ics were discovered (Lawvere, 1972; Mac Lane, 1988, pp.352–359;
Krömer, 2007).

CT became a contender for a foundation of mathematics, although
the hope that it undermine the overwhelming role of set theory turned
out unfounded and most working mathematicians keep away from CT
and toposes. CT yields new tools to study many formal mathemati-
cal theories and mutual relations between them, from a perspective
different from that set theory.

6. Recapitulation of some points

Let us recall Atiyah’s remark (quoted in the Introduction) that really
important discoveries get later omitted altogether as they become
absorbed by the general mathematical culture. This thought fits par-
ticularly well with the case of CT. Most of the ideas presented by
Eilenberg and Mac Lane in 1945 have been absorbed as a natural
language of advanced mathematical thinking. Once mathematicians
learnt the definitions of a functor and a natural transformation, these
concepts became a major tool of mathematical reasoning in many ab-
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stract theories of the second half of the 20th century. However, it took
several years to realise the scope of the change. Freyd commented as
follows:

MacLane’s definition of “product” (1950) as the solution of
a universal mapping problem was revolutionary. So revolu-
tionary that it was not immediately absorbed even by most
category minded people.

[...] In a new subject it is often very difficult to decide what is
trivial, what is obvious, what is hard, what is worth bragging
about (Freyd, 1964, p.156).

Mac Lane, however, used the definition of a product and its dual only
in the case of groups (general or abelian). He did not formulate it
mutatis mutandis in the general case of a category, although he had
several simple examples at hand. Freyd also told the story of the term
exact sequence, a technical definition in homological algebra. In the
late 1950’s, when he was a graduate student at Brown University, he
was brought up to think in terms of exactness of maps. This concept
seemed to him as fundamental as the notion of continuity must seem
to an analyst. And later he was astonished to hear that when Eilenberg
and Steenrod wrote their fundamental book (1952) they defined this
very notion, recognized the importance of the choice of a suitable
name for it, yet could not invent any satisfactory word. Consequently,
they wrote the word “blank” throughout most of the manuscript,
ready to replace it before submitting the book for publication. After
entertaining an unrecorded number of possibilities they settled on
“exact” (Freyd, 1964, p.157).

One may argue that the 1945 definitions of a category and of a
functor were within a major onward development of abstract algebra
and other advanced topics. In fact, originally they were not regarded
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as a novelty. Eilenberg and Mac Lane were not even certain whether
their paper will be accepted for publication (it was long and lacked
theorems with substantial proofs). However, they were genuinely
convinced of the significance of their conceptual clarification and took
pains to write the paper clearly to attract the reader.

After this publication for almost ten years CT appeared dormant.
The groundbreaking papers on abelian categories by Buchsbaum
and Grothendieck marked a far-reaching change. And then—in the
1960’s—CT unexpectedly started to grow rapidly, with astonishing
results (Mac Lane, 1988, pp.338–339, 341–361).

Thus, from the present perspective, in spite of the previous ar-
guments, one can say that the emergence of CT was undoubtedly a
major transgression in mathematics. It was a crossing of a previously
non-traversable barrier of deep-rooted habits to think of mathematics.
A vivid argument is the fact that—even after publication of the main
ideas—it was so difficult to overcome the previous inhibition and
widespread tradition.11

The creators of CT and their followers could choose their defi-
nitions freely, nobody could forbid that. And yet the previous way
of thinking was an obstacle for potential authors and for prospective
readers. Great insight of Eilenberg and Mac Lane of what is significant
in mathematics turned out a crucial factor.

11 Many mathematicians, in USA and elsewhere, expressed disinclination about CT.
Karol Borsuk, an outstanding topologist, the teacher of Eilenberg in Warsaw and
coauthor of their joint paper published in 1936, was later critical of CT and the
categorical methods in mathematics (Jackowski, 2015, p.30). Jerzy Dydak, a student of
Borsuk, recalled after years: My own PhD thesis written under Borsuk in 1975 makes
extensive use of category theory and I was asked by him to cut that stuff out. Only
after I assured him that I spent many months trying to avoid abstract concepts, he
relinquished and the thesis was unchanged (Dydak, 2012, p.92).
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Semadeni, Z., 2018. Platonizujący konceptualizm w matematyce. In: R. Mu-
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Abstract logical structuralism*

Jean-Pierre Marquis
Department of Philosophy, University of Montreal

Abstract
Structuralism has recently moved center stage in philosophy of math-
ematics. One of the issues discussed is the underlying logic of mathe-
matical structuralism. In this paper, I want to look at the dual question,
namely the underlying structures of logic. Indeed, from a mathemat-
ical structuralist standpoint, it makes perfect sense to try to identify
the abstract structures underlying logic. We claim that one answer
to this question is provided by categorical logic. In fact, we claim
that the latter can be seen—and probably should be seen—as being a
structuralist approach to logic and it is from this angle that categorical
logic is best understood.

Keywords
philosophy, logic, structuralism, categorical logic.

1. Introduction

In their recent booklet Mathematical Structuralism, Hellman
and Shapiro (2019), give a list of eight criteria to evaluate var-
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ious strands of mathematical structuralism. The very first criterion
is the background logic used to express the version of structuralism
examined: is it first-order, second-order, higher-order, modal? The
claim made by Hellman & Shapiro is that the logic has a direct impact
on the philosophical thesis: for instance, the existence of non-standard
models in first-order logic seems to affect some of the claims made
by a mathematical structuralist. Be that as it may, it is assumed that
any variant of mathematical structuralism is based on an underlying
logic and the chances are that a change of logic will modify the type
of structuralism defended. One then has to weigh the pros and the
cons of adopting a specific logic to defend a kind of mathematical
structuralism.

This is all well and good, and I don’t intend to discuss this assump-
tion in this paper. Let me rather turn the question of the underlying
logic on its head. A mathematical structuralist not only believes that
pure mathematics is about abstract structures, but also that pure logic
can be seen that way. In other words, a mathematical structuralist
aspires to know what are the abstract structures underlying a given
logic. Can logic itself be given a structuralist treatment? In other
words, is it possible to identify the abstract mathematical structures
from which the standard logical systems can be derived? In the same
way that the natural numbers or the real numbers can be seen as spe-
cific structures arising from the combination of particular structures
and properties, specific logical systems, e.g. intuitionistic first-order
logic, classical first-order logic would result from the combination of
particular abstract structures and properties. And important logical
theorems—completeness theorems, incompleteness theorems, defin-
ability, undecidability, etc.—would be instances of abstract structural
features, together with, presumably, singular properties.
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Our main claim in this paper is that categorical logic is one way to
give precise answers to these questions.1 Indeed, this is what categori-
cal logic is all about: it reveals the abstract mathematical structures
of logic and it relates them to other abstract mathematical structures,
revealing yet other structural features. It also shows how the main
results of logic are a combination of abstract structural facts and spe-
cific properties of logical systems. It is in this sense that one can say
that pure category theory is logic.2 This is one of the main points of
categorical logic. Thus, when mathematical structuralism is devel-
oped within the metamathematical framework of category theory, it is
possible to give a positive answer to our new challenge. And as far as
I know, it is at the time the only metamathematical framework that
allows us to do it in such generality.

Of course, we are not claiming that the abstract analysis is supe-
rior in a strong sense to the other presentations of logical systems.
It brings a certain perspective, a certain understanding and opens up
certain connections that are otherwise unavailable. Furthermore, in as
much as a logic is applied, be it in foundational studies or in computer
science, one also wants to look at it from a different point of view.
But it has to be perfectly clear that these are completely different
issues. We are now positioning ourselves in a structuralist framework,
and will therefore ignore the aspects of a logic that become prevalent
when one look at it for its applications. Ours is a philosophical goal,
not a technical one.

1 In his (1996), often quoted as representing the categorical perspective on mathemati-
cal structuralism, Awodey did include a presentation of the basic features of logic from
a categorical point of view, more specifically the internal logic of a topos. Given how
he treated logic in his paper, none of his critics saw that he was including logic itself
as an object of mathematical structuralism (see, for instance, Hellman, 2001; 2003).
We approach the issues from a different angle.
2 Which is not to say that it is all of logic. That is not the claim.
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It goes without saying that categorical logic, seen as a search
for the abstract structures of logic, did not come out of the blue. It
was part of a larger mathematical movement, namely the structuralist
movement in mathematics, which culminated in Bourbaki’s Éléments
de mathématique (for more on the prehistory and the history of math-
ematical structuralism, see Corry, 2004; Reck and Schiemer, 2020).
It will therefore be worth our while to look briefly at the birth of cate-
gorical logic in the 1960s and early 1970s. We will merely indicate
the major landmarks of the story, to see how indeed categorical logic
was, right from the start, understood as being a part of that movement.
We will then briefly look at some of the basic abstract structures that
correspond to logic and then how some of the main theorems follow
from features of abstract structures. At this point, to call the latter
‘mathematical’ or ‘logical’ is a matter of choice.

In the end, this paper should be taken as a challenge. We claim
that one should add a ninth criterion of Hellman & Shapiro’s list: how
does a given form of structuralism treat logic itself? Does it reveal the
structures of logic? Are these structures related to other mathematical
structures in a natural manner? Are these structures on the same level
as the other fundamental structures of mathematics? One could, and
we suggest that one should, evaluate different forms of mathematical
structuralism according to this criterion.

2. The abstract structures of logic:
setting the stage

Although category, functors and natural transformations were intro-
duced explicitly in 1945 by Eilenberg and Mac Lane, category theory
came to maturity only fifteen years later, thus at the beginning of the
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1960s (for more on this history, see, for instance Landry and Marquis,
2005; Krömer, 2007; Marquis, 2009; Rodin, 2014). At that point, the
major concepts of category theory were in place, e.g. adjoint functors,
representable functors, constructions on categories, including the cru-
cial construction of functor categories, abstract categories like additive
categories, abelian categories, tensor or monoidal categories, etc.3

But it is only in the early 1960s that the connection with logic and
the foundations of mathematics was made and it was mostly the work
of one person, namely Bill Lawvere. We will not present Lawvere’s
early work here, for our goal is not to survey the history of the subject,
but rather to make a conceptual point.4

Of course, by that time, connections between classical proposi-
tional logic and Boolean algebras, intuitionistic propositional logic
and Heyting algebras, as well as others were known. Already in
(Birkhoff, 1940), the main relations are presented.5 The first links
between logic and lattice theory were restricted to propositional logic.
The chase for the identification of the abstract structures correspond-
ing to first-order, higher order logics, non-classical logics, as well
as algebraic proofs of the main theorems of logic was taken up by,
among others, Tarski and his school, Halmos, and the Polish school,

3 The locus classicus of the time is (Mac Lane, 1965).
4 See (Lawvere, 1963; 1966; 1967; 1969a; 1970; 1971). He was rapidly joined by
(Freyd, 1966; Linton, 1966; Lambek, 1968a,b; 1969; 1972). For a detailed history, see
(Marquis and Reyes, 2012).
5 We could argue that already for propositional logics, the structures arising from the
logical systems naturally live in categories, e.g. the category of distributive lattices,
the category of Boolean algebras, the category of Heyting algebras, the category of
S4-algebras, etc., and that the main results are also naturally expressed in categorical
language. It is in fact an important point to make, for once the higher order logical
systems find their place in this landscape, the fact that we move to bicategories to
express and prove the results of first-order logic is easily understood. But we will not
dwell on that.
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e.g. Łoś, Mostowski, Rasiowa and Sikorski.6 The main contenders to
the title of abstract algebraic structures corresponding to first order
logic at the time were cylindric algebras and polyadic algebras. The
main problem, so to speak, were the quantifiers ∀ and ∃. It was not
a technical problem. They were treated properly in each case. But
their treatment, as algebraic operators, was somewhat ad hoc, in the
sense that they did not arise as an instance of abstract operators in an
algebraic context. The resulting algebras were therefore somewhat
ad hoc also, in as much as they did not belong to a family of abstract
structures that arose naturally in other mathematical contexts. In other
words, the abstraction proposed via the concepts of cylindric algebras
or polyadic algebras were not genuine mathematical abstractions, for
they were merely the algebraic transcription of the quantifiers and
solely of the latter.7 This is in stark contrast with the case of propo-
sitional logic, where the abstract algebraic structures capturing the
logic and its main properties have instances in a variety of completely
different mathematical fields. Distributive lattices, Boolean algebras,
Heyting algebras, etc., are genuine mathematical abstractions.

It therefore came as a complete surprise that the quantifiers, as
well as the propositional connectives, could be seen as being instances
of adjoint functors on very simple categories, the concept of adjoint
functors being one of the core concepts of category theory, intro-
duced by Kan in the context of algebraic topology in 1958. This was
one of Lawvere’s crucial observations. Three additional crucial facts

6 The list of references is long, but clearly indicates that it was a very active area of
research in the 1950s as well as in the 1960s. See, for instance, (McKinsey and Tarski,
1944; 1946; 1948; Jónsson and Tarski, 1951; 1952; Henkin and Tarski, 1961; Henkin,
Monk and Tarski, 1971; Halmos, 1954; 1956a,b,c,d; 1962; Mostowski, 1949; Rasiowa,
1951; 1955; Rasiowa and Sikorski, 1950; 1953; 1955; Rasiowa and Sikorski, 1963).
7 The reader might wonder what we mean by “genuine mathematical abstraction”. We
refer her to (Marquis, 2015; 2016).
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had been established by Lawvere in his Ph.D. thesis. First, Lawvere
showed how algebraic theories, in the standard logical sense of that
expression, could themselves be captured by specific categories. Sec-
ond, the models of algebraic theories, again in the standard logical
sense of that expression, could be described in the language of cate-
gories, functors and natural transformations. Third, the classical links
between the syntax and the semantics of these theories could receive
an adequate categorical treatment, and at the core of this treatment
one finds adjointness. Thus, it seemed possible to put all the structures
of logic in the theoretical framework of categories, the latter being,
of course, an abstraction of a central fact of modern mathematics.
The overall plan was presented by Lawevere in (1969a). That paper
articulates in very broad strokes how the syntax, the semantics and
their relationships could be captured in a categorical framework. Here
are, in a nutshell, the main ingredients of this ambitious program.

A few words about the philosophical framework underlying Law-
vere’s program are in order. Lawvere identifies two fundamental as-
pects to all of mathematics, namely the formal and the conceptual,
roughly the manipulation of symbols, on the one hand, and what these
symbols refer to, their content. Lawvere is aware of the work done
in algebraic logic when he writes his paper. Indeed, he refers to it
explicitly in the opening section: “[...] Foundations may conceptual-
ize the formal aspect of mathematics, leading to Boolean algebras,
cylindric and polyadic algebras [...]” (Lawvere, 1969a, p.281). He is
also presenting the introduction of categories in the analysis of logic
as a structural approach, based on the notion of adjoints: “Specifi-
cally, we describe [...] the notion of cartesian closed category, which
appears to be the appropriate abstract structure for making explicit
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[...]. The structure of a cartesian closed category is entirely given by
adjointness, as is the structure of a ‘hyperdoctrine’, which includes
quantifiers as well.” (Lawvere, 1969a, p.281)

We will now focus on the final section of the paper, which is really
programmatic. In this last section, Lawvere is describing what he
himself characterizes as a globalized Galois connection, and indeed,
it also contains the main ideas that have driven the development
of duality theory in a categorical framework. But as far as logic is
concerned, we are offered the following picture.

1. Logical operations should arise from an elementary context as
adjoint operations. From a categorical point of view, a logical
doctrine, that is an abstract mathematical structure encapsulat-
ing a logical framework, should be given by adjoint functors.8

2. A theory T, in the standard logical sense of the term, should be
constructed as a category, in the same way that a propositional
theory in classical logic can be turned into a Boolean algebra
via the Lindenbaum-Tarski construction. A theory T, seen as
a special type of category, is conceived by Lawvere as being
the invariant notion of a theory, that is, independent of a choice
of primitive symbols or specific axioms. We thus have abstract
mathematical structures corresponding to the formal.

3. The models of T should form a category. Lawvere, having
himself developed the case of algebraic theories earlier in his

8 We have to point out that categorical logic does cover logical situations in which
certain logical operations are not given by adjoint operations. Although they do not
constitute logical doctrines in the sense of Lawvere, they are part and parcel of
categorical logic. We should also mention that the syntactic aspects of logic, which are
pushed in the background in Lawvere’s early work, occupy nonetheless an important
part of categorical logic, for instance via the notion of sketch, introduced by Ehresmann
and his school or the various formal graphical languages developed mostly in the
context of monoidal categories.
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thesis, generalizes from his work and proposes to make the
category of models of a theory a functor category. We will
be more specific in later sections. These provide the abstract
mathematical structures emerging from the conceptual.

4. Last, but certainly not least, since everything is a category now,
the links between the formal and the conceptual should also
be given by (adjoint) functors, and we have yet again a new
type of abstract mathematical structure, in Lawvere’s mind a
globalized Galois connection, arising from that situation.

Lawvere was of course guided by his own work on algebraic theory,
but also explicitly by Grothendieck’s work in algebraic geometry. As I
said, at the time, it was a program, some would say a vision. It became
a reality in the following decade and is still the basis of important
developments in the field.

We have to explain why we claim that we are then in a struc-
turalist framework. It is not only because we are in fact dealing with
abstract mathematical structures—this is of course a necessary step—
but these abstract mathematical structures can be characterized up to
‘isomorphism’, where the latter notion is derived from the abstract
structures themselves. Each and every one of these abstract structures
comes with a notion of homomorphism and, in particular, a notion of
‘isomorphism’. Therefore, it becomes possible to develop logic with
respect to the structuralist principle: if X is a structure of a given kind,
and it has property P (X), then given any other structure Y of the
same kind such that X is isomorphic to Y , X ≃ Y , in the appropriate
sense of isomorphism, we should be able to prove that P (Y ). As it
can be seen, the key component of this desideratum is the appropri-
ate sense of isomorphism. In some cases, we are dealing with the
usual set-theoretical sense of isomorphism, in others, it becomes an
equivalence of categories and in still others, it is a 2-categorical equiv-



76 Jean-Pierre Marquis

alence. It is the very possibility of having the appropriate sense of
isomorphism that allows us to claim that we are dealing with abstract
mathematical structures.

I want to emphasize again, at this point, that I am not claiming
that categorical logic, as I will present it succinctly below, is the only
possible answer for a structuralist nor is it the final answer. But it is one
clear answer and one of the very few that provides a comprehensive
answer.

3. Categories as abstract logical structures

At this stage, we would have to give a long list of definitions and
examples to illustrate how certain categories correspond to the abstract
mathematical structures of certain logics. I will assume that the reader
knows the notions of category, functor, natural transformation, adjoint
functors, etc., for otherwise this paper would be terribly long and
boring. We will try to put some flesh on Lawvere’s program described
in the foregoing section. We assume, however, that the description of
the logical connectives, including the quantifiers, as adjoint functors
is understood9. We will sketch how the other three steps are filled10. A
warning is necessary. Each following section would require a careful
and systematic exposition to be ultimately convincing. It is impossible
to do justice to the field in such a short paper. We will provide a more
detailed presentation in the next section only and merely gloss over
the abstract mathematical structures involved in the other sections. We

9 Mac Lane’s textbook, (1998), is still a good reference. All the standard concepts and
examples can also be found in (Riehl, 2017).
10 A more detailed presentation can be found in (Marquis, 2009), chapter 6. Our
exposition here is adapted from the latter, but the philosophical point is different and
therefore the presentation found there might not be optimal for our present purpose.
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apologize for the opacity that might result from the lack of details and
clarifications, but a much longer paper would be required to present
and motivate adequately the main mathematical ideas involved.

A theory as a category and a category as a theory

Let us start with the goal that was in the minds of logicians and
mathematicians in the 1950s, that is finding the appropriate abstract
mathematical structure that correspond to a first-order theory.

Let us fix the logical context first. We consider formal systems
with many sorts, which is a simple generalization of the standard
first-order logic which is done over a single sort. A similarity type or
alphabet A, often called a language in the literature, is given by:

1. A collection of sorts S1, S2, S3, . . .;11

2. A collection of relation symbols R1, R2, R3, . . ., each of which
is given with the sorts of its arguments;

3. A collection of function symbols f1, f2, f3, . . . each of which
is given with the sorts of its arguments and the sort of its target;
we denote a function symbol f as f : S1 × · · · × Sn → S if f
takes n arguments of sorts S1, . . . , Sn respectively to a value
of sort S.

4. A collection of constants c1, c2, c3, . . . each with a specified
sort; we denote a constant c by c : 1→ Si to indicate that the
constant c is of sort Si.

11 Or types, if you prefer. We are dealing here with first-order logic. We will say a few
words about type theory later. It does not affect our basic general point. Type theories
can also be analyzed as instances of abstract mathematical structures.
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This is the standard definition extended to a many-sorted context.
To obtain a formal system LA in the alphabet A, we add the usual
elements:

1. Each sort Si comes with infinitely many variables
x1, x2, x3, . . .; we write x : Si to indicate that the variable x is
of sort Si;

2. Each sort has an equality relation =S ; notice immediately that
this means that equality is not treated as a universal or purely
logical relation and that in the interpretation, whatever will
correspond to a sort will have to come equipped with a criterion
of identity or equality for its objects;

3. The usual logical symbols and two propositional constants, ⊤
and ⊥;

4. The usual deductive machinery for a predicate logic (say, intu-
itionistic predicate logic; if any other deductive procedures are
assumed, they are made explicit).

Terms (of a given sort) and atomic formulas are defined as usual.
Here is the first original result obtained by searching for abstract

mathematical structures corresponding to theories in a given logic.
Some fragments of first-order logic and some extensions of first-order
logic turn out to have significant properties, properties that would not
have been identified otherwise12. We can immediately identify the
following fragments.

1. A formula φ is said to be regular if it is obtained from atomic
formulas by applying finite conjunction and existential quan-
tification.

12 We will not be exhaustive here. There are other infinitary fragments that are impor-
tant, but we will ignore them.
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2. A formula φ is said to be coherent if it is obtained from atomic
formulas by applying finite conjunction, disjunction and exis-
tential quantification.

3. A formula is said to be geometric if it is obtained from atomic
formulas by applying finite conjunction, finite existential quan-
tification and infinite disjunction.

Intuitionistic formulas and classical (or Boolean) formulas are
defined in the obvious manner. We point out immediately that many
metalogical results about intuitionistic and classical logic follow di-
rectly from results about the foregoing fragments. This is a genuine
discovery that could not have been foreseen beforehand.

An implication of regular (resp. coherent, geometric, etc.) formu-
las φ and ψ has the form

∀x1 . . . ∀xn(φ(x1, . . . , xn)⇒ ψ(x1, . . . , xn))

where φ(x1, . . . , xn) and ψ(x1, . . . , xn) are regular (resp. coherent,
geometric, etc.) formulas. A theory T in the given language L is said
to be a regular theory (resp. coherent, geometric, etc.) if all its axioms
are implications of regular (resp. coherent, geometric, etc.) formulas.
Many mathematical theories can be expressed in the form of regular
theories, or coherent theories, etc.

Apart from the fact that we have assumed a many sorted context
and cut the fragments of first-order logic in ways that might seem
arbitrary, the foregoing presentation is squarely in a standard logical
context. We now move to the abstract mathematical context.

Given a theory T in one of the foregoing languages, we construct
a category denoted by [T], out of it. The latter is sometimes called
the category of concepts, sometimes the syntactic category, and it is
basically an extension of the Lindenbaum-Tarski construction, but for
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theories expressed in first-order logic (and others, as the reader can
now guess). It is constructed from the language and the axioms of T
as follows.13

Remember that we are constructing a category, thus a web of
objects connected by morphisms. To get the objects of this category,
we start with formal sets [x;φ(x)], where x denotes a n-tuple of
distinct variables containing all free variables of φ and φ is a formula
of the underlying formal system L. Two such formal sets, [x;φ(x)]
and [y;φ(y)] are equivalent if one is the alphabetic variant of the other,
that is if x and y have the same length and sorts and φ(y) is obtained
from φ(x) by substituting y for x (and changing bound variables if
necessary). This is an equivalence relation and it is therefore possible
to consider equivalence classes of such formal sets. An object of
the category of concepts [T] is such an equivalence class of formal
sets [x;φ(x)], where φ is a formula of the formal system L. The
objects of [T] are the equivalence classes of these formal sets, for all
formulas of L. Notice this last important point: we take all formulas
of the language, not only those which appear in T. Thus, in a sense,
the space of objects is the collection of all possible properties and
sentences expressible in that language, thus all possible theories in
the given formal system. No logical relationship is considered at this
stage. The next step introduces the structure corresponding to the
structure of that particular theory T. This is just as one would expect
in a categorical framework: the structure of T is captured by the
morphisms we will define and the properties resulting therefrom.

It is easier to motivate the definition of morphism with an eye
on the semantics, although the properties of the morphisms, e.g.,
that they form a category, have to be proved with the syntactical

13 See also (Makkai and Reyes, 1977, chap. 8) or (Mac Lane and Moerdijk, 1994,
chap. X, § 5) for more details and proofs or again (Johnstone, 2002).



Abstract logical structuralism 81

features of the theory (unless one has a completeness theorem at hand).
The basic idea is this: a functor from [T] to Set should transform
the objects of [T] into genuine sets and the morphisms of [T] into
genuine functions automatically. These functions should be functions
that are definable in T—i.e., for which we can prove in T that they
are indeed functions. Furthermore, [T] should contain all of them.
By sending a formal set [x;φ(x)] to the set of n-tuples satisfying
the formula, i.e. {(x1, . . . , xn) | φ(x)}, a morphism from [x;φ(x)]

to [y;ψ(y)] should become a genuine function between genuine sets
{(x1, . . . , xn) | φ(x)} and {(y1, . . . , ym) | ψ(y)} respectively. Such
a morphism should simply be given by a formula of the theory T

that defines such a function, that is a formula θ(x,y) of T that is
provably functional. The only trick in the construction is to construct
a morphism between two (equivalence classes of) formal sets [x;φ(x)]
and [y;ψ(y)] in such a way that, when interpreted, it yields the graph
of the function, in the standard set-theoretical sense of that expression,
between the actual sets {(x1, . . . , xn) | φ(x)} and {(y1, . . . , ym) |
ψ(y)}. Thus, all definable functions in T will be represented by a
morphism in [T].

Formally, consider a triple (x,y, γ), where x and y are disjoint
tuples of distinct variables and γ is a formula with free variables
possibly among x and y. Such a triple defines a formal function if the
following formulas are provable:

T ⊢ ∀x∀y(γ(x,y)⇒ (φ(x) ∧ ψ(y)));
T ⊢ ∀x(φ(x)⇒ ∃y(γ(x,y)));

T ⊢ ∀x∀y∀y′(γ(x,y) ∧ γ(x,y′)⇒ y = y′);

where we have used some obvious abbreviations. The underlying moti-
vation should be clear: these formulas will be true in any interpretation
of T in which γ is indeed a morphism.
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We now define an equivalence relation (x,y, γ) ∼ (u,v, η) if

T ⊢ ∀x∀y(γ ⇔ (η(x/u,y/v))).

The equivalence relation guarantees that for every model M of T,
the functions corresponding to γ and to η will coincide. We can
now stipulate that a formal function is an equivalence class of the
foregoing equivalence relation. Given a representative (x,y, γ) of
such an equivalence class, we denote the equivalence class containing
it by ⟨x 7→ y : γ⟩. Thus, a formal morphism in [T] is denoted by:

⟨x 7→ y⟩ : [x : φ]→ [y : ψ].

We need two more ingredients to get to a category. Firstly, for
each formal set [x : φ(x)], the identity morphism is provided by the
formal morphism ⟨x 7→ y : (x = y)∧φ⟩. Secondly, given two formal
morphisms ⟨x 7→ y : γ⟩ : [x : φ]→ [y : ψ] and ⟨y 7→ z : η⟩ : [y : ψ]→
[z : ζ], their composition is defined by the formal morphism ⟨x 7→
z : µ⟩ : [x : φ]→ [z : ζ] where µ = ∃y(γ ∧ η). These two definitions
satisfy the usual requirements of a category. Thus, [T] is a category
and we have an abstract mathematical structure corresponding to a
given theory.

Notice that [T] is not a category of structured sets and structure-
preserving functions! A lot of information about T is lost when all
we have at our disposal is [T]. It is, for instance, impossible to know
which atomic formulas are involved in specific formal sets or what
were the primitive symbols of the language LT. Furthermore, two
different theories T and T′ can very well yield isomorphic categories
of concepts, thus essentially the same category. We are squarely in
a structuralist framework: the category [T] is given up to an isomor-
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phism of categories.14 As we have seen, the syntactic logical opera-
tions, i.e., quantifiers and connectives, become categorical operations
in the category and this part of the structure is not lost. Again, moving
from a theory T to its category of concepts [T] is an abstraction: the
specific formulas with specific variables are abstracted from when
we move to the equivalence classes. The category of concepts is the
category of all definable sets and functions of a theory T. Thus, in a
sense, it contains all the formally expressible concepts of T, whence
its name.

When we start with, for example, a regular theory, the foregoing
construction yields a category with additional structures and proper-
ties. For instance, it is automatically a category with finite limits.

T and [T] are interchangeable in the following sense: for, given a
(small) category C, at least with finite limits, it is possible to associate
or construct the language LC of C as follows. We first have to identify
the alphabet of LC . The sorts are given by the objects X,Y, Z, . . . of C.
Every morphism f : X → Y of C becomes a function symbol of LC .
(In particular, a constant c : 1→ X is seen as 0-ary function symbols.)
This is called the canonical language of C. Notice that LC is obtained
as if we had taken C and destroyed its categorical structure, retaining
only the symbols, and keeping in mind that function symbols are
sorted. It is possible to extend this language to reflect the structure of
C more closely. Although subobjects of C can be denoted naturally by
formulas of LC , it is possible to introduce relation symbols for each
subobjectR(x1, . . . , xn) ↣ X1×· · ·×Xn and n-ary function symbol
for morphisms f : X1 × · · · ×Xn → X. This is called the extended
canonical languageof C (see Makkai and Reyes, 1977, chap. 2, sec. 4).
In order to get the internal theory TC of C in its canonical language,

14 Notice that we are talking about isomorphism here and not an equivalence of
categories.
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C has to have more structure than just finite limits. It has to be at least
a regular category, which we will define shortly. In this case, it is
possible to give a list of regular axioms ΣC , that is a set of regular
formulas, and prove that TC is sound in C (see Makkai and Reyes,
1977, chap. 3). The internal theory TC is related to C by two expected
properties:

1. There is a canonical interpretation G of TC in C;
2. For any model M of TC in a regular category D, in any reason-

able sense of the term ‘model’, there is a unique regular functor
I : C → D such that I applied to G is equal to M .

It is of course possible to complete the circle: starting with a
regular category C, construct its internal theory TC and then move
to its category of concepts [TC ]. How are C and [TC ] related? They
are in fact equivalent as categories, which means that they share the
same categorical properties. In other words, as abstract mathematical
structures, they are indistinguishable. From this, it is possible to
conclude a very important result that every (small) regular category is
equivalent to a category of concepts for some theory T.

The Architecture of Logical Theories

We now have sketched how a theory in a logical framework can
be turned into an instance of an abstract mathematical structure. It
should not come as a surprise to learn that a regular theory T (resp. a
coherent, geometric, etc.) yield a specific kind of abstract category,
namely a regular category (resp. a coherent, geometric, etc.). We
will fill in some blanks here, for we want to emphasize the existence
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of kinds of abstract mathematical structures. The existence of these
abstract mathematical structures explains why we have introduced
these fragments of first-order logic. Logic itself can be organized
from the perspective of these structures. We thus get what we call the
“architecture of logical theories” or the “architecture of logic”.15

We will simply state the definition without explaining all the
technical details. We refer the reader to the literature.

A regular category C is a category with finite limits16, such that

1. Every morphism has a kernel pair;
2. Every kernel pair has a coequalizer;
3. The pullback of a regular epimorphism along any morphism

exists and is a regular epimorphism.

This is the purely abstract mathematical structure corresponding to
a regular theory T, but the abstract notion was not abstracted from
that construction. It has an independent mathematical existence. The
definition does not show automatically how regular logic can be
interpreted in a regular category or that a regular theory yields, as its
category of concepts, a regular category. But of course, in both cases,
it does.

In a structuralist framework, one has to specify the criterion of
identity for the abstract structures given. Thus, we first have to specify
what a regular functor between regular categories is. Of course, it is
a functor that preserves the appropriate structure. In this particular

15 Again, we are being very selective, and our goal is not to be exhaustive. The picture
is much more elaborate than what we are presenting here. This is but the tip of the
iceberg.
16 There are various equivalent definitions of regular categories in the literature. We
are following (Borceux, 1994).
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case, a functor F : C → D between regular categories is regular if
it preserves finite limits and regular epimorphisms. The criterion of
identity for regular categories is given by the notion of equivalence of
regular categories, that is by a pair of regular functors F : C → D and
G : C → D such that G ◦ F ≃ 1C and F ◦G ≃ 1D.

In the same vein, corresponding to coherent theories, we have:
A coherent category C is a regular category such that

1. Every subobject meet semilattice S(X) is a lattice;
2. Each f∗ : S(Y )→ S(X) is a lattice homomorphism.

A coherent functor between coherent categories is a functor preserv-
ing the coherent structure, and the criterion of identity for coherent
categories is extracted from that context.

And, of course, we can add more structure and properties to get
other abstract mathematical structures. Let us simply mention a few
more abstract structures that are directly related to logic.

A Heyting category C is a coherent category in which each
f∗ : S(Y )→ S(X) has a right adjoint, denoted by ∀f . The last condi-
tion is sufficient to entail that each S(X) is a Heyting algebra, that f
is a homomorphism of Heyting algebras and that the right adjoint is
also stable under substitution. Heyting categories are common: for any
small category P , the functor category SetP is a Heyting category.
They correspond to theories in intuitionistic predicate logic. Heyting
functors are defined in the expected manner.

A Boolean category C is a coherent category such that every
S(X) is a Boolean algebra, i.e., every subobject has a complement.
Boolean functors between Boolean categories are functors preserving
the Boolean structure.
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A pretopos C is a coherent category having (1) quotients of equiv-
alence relations and (2) finite disjoint sums. Pretopos functors can be
defined.17 The notion of pretopos occupies a central place in the pic-
ture, since many of the important theorems about logic can be hooked
to that notion. Finally, we have to mention at this stage the notion of
Grothendieck topos, which surprisingly sits right at the center of the
development of first-order logic and its many variants.18 There is no
need to go on for our purposes.

Let us immediately point out that the category Set is regular,
coherent, Heyting, Boolean, a pretopos and a Grothendieck topos.
And it is even more than just those.

There is an interesting and immediate application of the above
constructions. In a classical logical framework, the notion of a inter-
pretation or translation of one category into another one is delicate
and complicated. Once we move from a theory T to its category of
concepts [T], there is a very simple and direct way to define it. Indeed,
a structure-preserving functor I : [T] → [T′] between (small) cate-
gories of concepts is called an interpretation of [T] in [T′]. (When
[T] and [T′] have been constructed from theories, one can verify that
it is a legitimate notion of interpretation (see Makkai and Reyes, 1977,
chap. 7, p.196).

17 As we have already mentioned, for many important results, it is enough to consider
weaker functors between some of the categories involved, e.g. coherent functors, for
they preserve, in these particular contexts, the additional structure.
18 As already pointed out by Makkai & Reyes in (1977), Giraud’s theorem can be
interpreted as giving a logical characterization of the notion of a Grothendieck topos
(see Makkai and Reyes, 1977, chapter 1, section 4; for a more recent look at the role
of Grothendieck toposes in logic, see Caramello, 2018; see also Caramello, 2014).
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The models of a theory as a category

We now have to consider how a theory T can be interpreted in
a category C. As it is often the case when facing such a situation,
the easiest solution is to translate what one does in sets, but express
it in the language of the category of sets and finally move to an
arbitrary category with the adequate structure and properties. It can
indeed be done and what we get is a genuine generalization of Tarski’s
notion of satisfaction or model. The classical notions of satisfaction,
interpretation, model and truth transfer directly to this new context.
However, instead of presenting the nuts and bolts of these definitions,
we will jump immediately to the next step.

Since we have constructed [T] from T, and since [T] is a cate-
gory, we can look directly at the interpretations of the latter. We will
illustrate the situation with a coherent theory T, but starting with the
(small) coherent category [T] constructed from it. A coherent functor
M : [T]→ Set is called a (set-)model of [T]. Since Set is a coherent
category, this makes sense.

It is natural to consider to category of all such models, that is the
functor category Mod([T],Set), the category of all (set-)models of
[T]. The objects of this category are the models of [T], that is coherent
functors M : [T] → Set, and the morphisms are the natural trans-
formations between models η : M1 → M2. These are the homomor-
phisms of models of [T] and they are the traditional model-theoretic
structure-preserving functions between models. More generally, for
any coherent category C, the category Mod([T], C) of models of [T]

in C is defined in the same way. We therefore have a flexibility that
was not available previously.
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The category Mod([T],Set) of models of [T] in Set is certainly
an instance of an abstract mathematical structure.19 It has, in fact, a
lot of structure. It is, among other things, a Grothendieck topos, an
important type of abstract mathematical structure.

A theory and its models: moving up the ladder

We have identified some of the abstract mathematical structures
that arise from the traditional logical notions. We now have, on the
one hand, abstract mathematical structures corresponding to what
Lawvere referred to as the “formal”, and, on the other hand, abstract
mathematical structures corresponding to what Lawvere referred to
as the “conceptual”. Of course, these have to be connected and these
connections constitute the core of classical logic.

These connections are themselves part of an abstract math-
ematical structure. Since [T] is a category—the formal side of
mathematics—and Mod([T],Set) is a category—the conceptual side
of mathematics—, we can investigate the functors between them. But
there is more. There are also functors between theories [T] → [T′],
functors between set-models of theories

Mod([T],Set)→ Mod([T′],Set),

functors between models of theories in different categories

Mod([T], C)→ Mod([T],D),

19 This is also true when we take category different from Set. But then, the structure
of the resulting category depends directly on the structure of C.
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functors between all those and natural transformations between some
of these functors!20 In fact, we are in a 2-category, which is a gen-
uinely new structure. A 2-category is not merely a category with
additional data. Thus, once again, we are in a realm of abstract math-
ematical structures and many of the results we are interested in will
be consequences of this abstract mathematical structure together with
some specific properties inherent in the situation we are dealing with.

Here are some questions that can now be investigated. The main
point here is that these questions make perfect sense, they are entirely
natural, whereas it is hard to imagine how they could have arisen
outside this mathematical context.

1. Given an interpretation I : [T] → [T′] between theories, one
can transfer models of T′ to models of T by composing with
I , that is given a model M : T′ → Set, we get by composition
with I a model M ◦ I : T → Set. Hence, there is a functor
I∗ : Mod(T′,Set)→ Mod(T,Set). The natural questions to
ask pertain to the relations between I∗ and I. More specifi-
cally, are there properties of I∗ that imply properties of I? In
particular, is it possible that I∗ being an equivalence of cate-
gories imply that I is? In words, what are the properties of the
conceptual that affect the properties of the formal?

2. Given a functor F : C → D of the right type (that preserves
the right kind of structure in each case), we get a functor
F ∗ : Mod([T], C) → Mod([T],D) by composing models M
with F . One question here focuses on the categories C and D,
more specifically on C and the abstract mathematical structure

20 We are not being careful here. Some of these are covariant functors, while others
are contravariant. We simply want to point at the possibilities at this juncture. We are
not developing the theory as such. Again, these details do not affect our main point.
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both these categories are instances of. Thus, is there an abstract
mathematical type of structure such that all the models of [T]

in D arise from models of [T] in C and functors C → D?

Other questions can be formulated, but these are not unlike ques-
tions that arise in other mathematical domains, thus relating this for-
mulation of logic with comparable frameworks. To be able to identify
what is the common abstract core of logic with other mathematical
domains and what is specific to logic is one of the gains of the abstract
structuralist approach.

4. Metalogical theorems from an abstract
structural standpoint

From a structuralist standpoint, once the abstract mathematical struc-
tures have been identified, one hopes to be able to prove standard
theorems from that vantage. And, indeed, one can. One of the epis-
temic gains expected from these theorems is the identification of the
abstract components involved in various proofs and thus see what is
the core structural component upon which these results are grounded.
Another expected benefit is the possibility to get genuinely new re-
sults which were impossible to get in the classical framework, even
impossible to formulate adequately.

Completeness and conceptual completeness

Let us start with what can be considered the pillar of logic in
general, namely completeness results. Completeness results for vari-
ous propositional logics are equivalent to representation theorems for
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various algebras, e.g., in the case of classical propositional logic, the
completeness theorem is equivalent to Stone’s representation theorem
for Boolean algebras. As we have already mentioned, the most natural
context to prove this result is already the context of the category of
Boolean algebras and the theorem is done up to isomorphism.

Moving to first-order logic, it is to be expected that the complete-
ness theorems would amount to representation theorems for certain
categories, e.g. regular, coherent, pretoposes, Heyting, Boolean, etc.
Indeed, the classical (Gödel) completeness theorem is equivalent to a
representation theorem for coherent categories, which can be stated
thus: for any small coherent category C, there is a (small) set I and a
conservative coherent functor F : C → SetI . A functor F : C → D is
said to be conservative if it reflects isomorphisms, i.e., if F (f) is an
isomorphism in D, then f was already an isomorphism in C. Needless
to say, the key property is precisely that of being conservative. For
what it amounts to is the fact that for any diagram in C such that its
image under F in D is a diagram of a universal morphism, then the
original diagram was already a diagram of a universal morphism in C.

As we have already mentioned, the category Set is coherent and
so is the functor category SetI . Since the functor F : C → SetI is
conservative, it follows that C shares all the coherent properties of
SetI , and in fact of Set. The equivalence between the representation
theorem and the completeness theorem can be established as follows.
Assuming the representation theorem, we start with a coherent theory
T and construct the category of concepts [T] of T, which is a coherent
category. Applying the representation theorem to [T], we obtain the
completeness theorem. To prove the other direction, we assume the
completeness theorem and start with a coherent category C. Using the
internal language of C, one constructs as above the coherent theory TC
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of C. The models of TC are then constructed so that they are identical
with functors C → Set. The representation theorem then follows from
the completeness theorem for TC .

Two important elements have to be added to the picture. First, the
representation theorem for coherent categories is but one represen-
tation theorem for a whole collection of relevant categories: regular
categories, pretoposes, Heyting categories and Boolean categories.
Second, these results in fact follow a general pattern. Indeed, the
foregoing representation theorem takes a general, purely categorical
form, in other words, there is a crucial part that is purely based on
the abstract mathematical structures. Given any categories S and C,
we can always consider the repeated functor category S(SC).21 In this
situation, there is a canonical functor, the evaluation functor

e : C → S(SC)

for which, given any object X of C, and any functor F : C → S,
e(X)(F ) is simply F (X), the evaluation of F at X. For any subcat-
egory D of SC , the same functor e : C → SD can be defined. It is
then possible to show that the representation theorem for coherent
categories is equivalent to the claim that the functor e : C → SMod(C)

is conservative. The fact that the evaluation functor is coherent holds
on purely general grounds. We therefore have a purely categorical
description of the representation theorem. Moreover, in the early sev-
enties Joyal demonstrated that the functor e preserves all existing
instances of the Heyting structure in C. This automatically yields a
representation theorem for Heyting categories and, in turn, a canonical
completeness theorem for intuitionistic logic.

21 This is not an unusual construction in mathematics. Think of the double dual of a
finite-dimensional vector space, for instance.
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The categorical set-up allows is to consider a stronger claim,
called the conceptual completeness. Given a functor I : T →
T′ and an equivalence of categories between Mod(T′,Set) and
Mod(T,Set), when is it possible to conclude that I is also an equiva-
lence of categories? From a categorical point of view, the assumption
means that the category of models of T′ is indistinguishable from the
category of models of T. We can think of the functor I as a translation
of [T] into [T′], thus as a case when the latter theory can in princi-
ple be more expressive than the former. In a sense, the conceptual
completeness can be interpreted as saying that adding new concepts
to T simply does not modify in any essential way what it can ex-
press. This means that T has some sort of completeness and in this
context it makes perfect sense to say that it is conceptually complete.
Thus, we say that T is conceptually complete whenever the follow-
ing is satisfied: if the functor I∗ : Mod(T′,Set)→ Mod(T,Set) is
an equivalence of categories, then the functor I : T → T′ was one
already. This literally means that by moving to T′, we did not add
anything essentially new to T, although we might have thought we
had, and this information was obtained by looking at the categorical
structure of the category of models of the theories. We can conclude
that a certain logical framework, say an equational theory, is enough
to characterize a type of structures, from the categorical structure of
the category of models. Conceptual completeness is in fact equivalent
to a standard result of model theory, namely Beth definability theorem.
However, one of the advantages of working in the categorical frame-
work is that categorical methods make it possible to prove results
which might not be accessible otherwise, for instance, a constructive
proof of this result for intuitionistic logic.22

22 See (Pitts, 1989) for a categorical proof of conceptual completeness of intuitionistic
first-order logic.
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It is possible to strengthen the conceptual completeness theo-
rem. In the latter, we assume as given a functor I : T → T′. Is it
possible to start with an equivalence of categories Mod(T,Set) →
Mod(T′,Set) and construct from it an equivalence T → T′? This
is much stronger theorem, but it can be proved under certain circum-
stances. It says that a logical theory is completely characterized by
the categorical structure of its category of models. In some sense, the
conceptual determines the formal, up to equivalence. In the case of
propositional logic, it amounts to a form of Stone duality, the latter
being formulated entirely within the category of Boolean algebras, and
not as the existence of an equivalence of categories between the cate-
gory of Boolean algebras and the category of Stone spaces. The strong
conceptual completeness asserts that the Lindenbaum-Tarski algebra
of a propositional theory can be recovered from its space of models—
the ultrafilters on the given Boolean algebra. A theory for which the
theorem can be proved is said to be strongly conceptually complete.
A different way to formulate this result is to say that if Mod(T,Set)

and Mod(T′,Set) are equivalent, then T and T′ are equivalent too.
Whereas conceptual completeness is a local phenomenon, since it
depends on the interpretation I, strong conceptual completeness is
a global phenomenon, since there is no underlying interpretation at
hand. The construction of T can be thought of as a case of abstracting
certain data out of another, more “concrete”, situation. Finite limit
categories of concepts are strongly conceptually complete23, although
the original result applied to (Boolean) pretoposes. If the category of
models is adequately enriched in a precise technical sense, then in
these circumstances first-order classical logic is strongly conceptually
complete (see Makkai, 1988; 1990; for a a different proof which is

23 Thus they are the so-called Barr-exact categories. A Barr-exact category is a regular
category in which every equivalence relation is a kernel pair (see Makkai, 1990).
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build with higher-dimensional categories in mind, see Lurie, 2019).
Notice that it is hard to see how this theorem could even be formulated
outside the context of category theory.

It is impossible not to mention the fact that strong conceptual
completeness theorems are closely related to dualities. In fact, they
are equivalent in a precise technical sense to dualities. The only thing
we want to underline is that these results are proved in the context
of 2-categories. Thus, it is not only that the natural set-up involves
2-categories, but that important theorems require 2-categorical (even
bicategorical) concepts. We cannot, in such a short paper, present
these in any comprehensible manner.

Syntax and abstract completeness

From the above considerations, the reader might feel that we
have entirely left behind syntactical considerations, more specifically
formal deductions. Therefore, it might seem like the categorical com-
pleteness results are not quite the same as the classical results which
assert that semantical consequences of a theory are provable in a fully
specified formal system. This is not the case. For one thing, we have
not abandoned the syntax, nor the formal systems in these investiga-
tions. But there is an additional point to make, for it brings to the fore
a way of dealing with the syntax of theories that emerged naturally
from the context of categories, namely the idea of a sketch and its
generalizations.

From Lawvere’s thesis, category theorists toyed with the idea that
a theory could be presented directly in the form of a category or some
graphical variant thereof. In this spirit, sketches were introduced by
Charles Ehresmann in the early 1960s and developed afterwards by
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him and his school (see Ehresmann, 1967; 1968; Lair, 2001; 2002;
2003, for instance). A sketch, which is a specific kind of (oriented)
graph, is a new kind of syntax, specifically tailored to do categorical
logic. It gives directly in a graphical way the syntactical and proof
theoretical content of a theory.

We will give one definition of the notion of sketch24. A sketch
S = (G,D,L,C) is given by a graph G, a set D of diagrams in G,
a set L of cones in G and a set C of cocones in G. We can consider
the category of sketches by stipulating that a morphism of sketches
is a homomorphism of graphs which preserves the diagrams, the
cones and the cocones. It is easy to see that any category C has an
underlying sketch SC. A model of a sketch S in a category C takes
all the diagrams of S to commutative diagrams, all the cones of S
to limits of C and all cocones of S to colimits of C. A morphism
of models is a natural transformation. Thus, we can reproduce what
we did above with theories, namely we can construct the category of
models Mod(S,C) of a sketch S in a category C.

It is natural to consider sketches in which there are no cocones
and only discrete and finite cones, or in which there are no cocones
and only finite cones, etc. Sketches organized themselves with respect
to these natural choices and they correspond to various logical theo-
ries. Thus, there are finite product sketches (a FP-sketch), left exact
sketches (a LE-sketch), regular sketches, coherent sketches, etc.

In this framework, it is natural to ask which categories are sketch-
ables: is it possible to characterize categories that are equivalent to
categories of models of a type of sketch? There are positive answers to
that question and it naturally brings us, when the most general kinds
of sketches are considered, to infinitary logic L∞,∞ (see Lair, 1981;
Makkai and Paré, 1989).

24 See (Barr and Wells, 1990; 2005) for an introduction to sketches.
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Generalization of the notion of sketch has led Makkai to develop
a categorical proof theory and establish a completeness theorem along
the classical lines, that is proving that a formula is formally provable
in a theory if and only if it is true in all models of the theory. Interest-
ingly enough, the set-up still rests upon the categorical representation
theorems, but it is enriched with a categorical notion of formal proof
in the set-up of (generalized) sketches. (see Makkai, 1997a,b,c).

Incompleteness

We have to say a few words about Gödel’s incompleteness theo-
rems. Is it possible to identify abstract mathematical structures that
underly these theorems? Is it possible to deduce these theorems from
a theorem or theorems about these abstract mathematical structures?
There are some pieces in place, although the complete picture—no
pun intended—has still to be presented.

First, already in the 1960s, Lawvere presented a categorical anal-
ysis of various phenomena related to Gödels’s incompleteness theo-
rems. In his (1969b), Lawvere presents what he takes to be the abstract
mathematical structure underlying Cantor’s theorem that there is no
surjection X → 2X and its variants in the heads of Russell, Gödel
and Tarski. The starting point here is the notion of a cartesian closed
category. A cartesian closed category is a nice example of a categori-
cal doctrine since it can be given entirely by stipulating the existence
of certain adjoint functors to elementary, that is first-order, functors.
More precisely, a cartesian closed category C is a category such that

1. The functor ! : C→ 1 has a right adjoint;
2. The diagonal functor ∆ : C → C × C has a right adjoint,

namely the product functor;
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3. For each object X of C, the functor X × (−) : C → C has a
right adjoint (−)X .

Given a cartesian closed category C, it is possible to then define
what D. Pavlovic has called a “paradoxical structure” on an object
of C that satisfies a fixed-point property. By specifying the adequate
cartesian closed category C and the paradoxical structure on objects of
C, it is possible to prove Cantor’s theorem, Russell’s paradox, Gödel’s
first incompleteness theorem, Tarski’s theorem of the impossibility of
defining truth in a theory and many others (see Pavlović, 1992 and
Yanofsky, 2003).

In a series of unpublished lectures presented in the 1970s, André
Joyal introduced another abstract mathematical structure, in a precise
sense weaker than Lawvere’s proposal, to pursue the analysis of
Gödel’s incompleteness results, in particular the second theorem,
namely what he called ‘arithmetical universes’. Very roughly, an
arithmetic universe U is a pretopos such that the free category object
constructed from a graph object in U exists. This is the abstract
structure in which one can do recursive arithmetic and prove versions
of the two incompleteness theorems (see Maietti, 2010 for a different
definition).

Type theories

We will be very succinct, not because this area is not impor-
tant, quite the contrary, but simply because there is no need to cover
everything in details given the goal of this paper.

The first and well-known result in this area is the correspondence
between cartesian closed categories with a natural number object and
typed λ-calculus. We finally get to elementary toposes. These were
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introduced by Lawvere and Tierney in 1970 to provide an elementary
treatment of sheaves over a site, thus of Grothendieck toposes. It is
another remarkable example of a categorical doctrine. An elementary
topos E is a category with finite limits, cartesian closed, and has a
subobject classifier. These three conditions do amount to the exis-
tence of certain adjoint functors to given (elementary) functors. As
is well known now, it is possible to construct an intuitionistic type
theory from a given topos E and, conversely, it is possible to specify
an intuitionistic type theory such that its conceptual category is an
elementary topos and it can be interpreted in an elementary topos.
There is then a correspondance between categorical properties of the
topos and logical properties of the type theory (see Boileau and Joyal,
1981; Lambek and Scott, 1988).

The same can be said about homotopy type theory. Homotopy
type theory comes form Martin-Löf’s intensional type theory (see
The Univalent Foundations Program, 2013). It has models in various
categories, but a homotopy type theory ought to correspond to a kind
of abstract categories. It has been conjectured, by Steve Awodey,
that homotopy type theory should correspond to the internal logic of
higher-dimensional elementary toposes. As of this writing, the full
conjecture has still to be proved, although certain advances have been
made (see Kapulkin and Lumsdaine, 2018).

One last thing...

Last but not least, connections between linear logic and category
theory appeared almost immediately after the creation of linear logic
by Girard in (1987) (see Lafont, 1988; Seely, 1989). It took almost
twenty years of research before a consensus emerged as to what
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constitutes a categorical model of linear logic (see Bierman, 1995;
Blute and Scott, 2004; Melliès, 2009; de Paiva, 2014). We will not
introduce nor discuss the categorical framework here. It would require
defining and explaning a lot of categorical structures, e.g. symmetric
monoidal categories, symmetric monoidal adjunctions, etc., as well
as an explanation of how the various frameworks proposed converge
towards a basic structure. The point is: we may be seeing the beginning
of a stable picture that will allow us to start building a conceptual
interpretation of linear logic. In as much as homotopy type theory
seems to be intimately connected to the basic constituents of spaces,
the “atoms of space” to use Baues’s expression in (2002), namely
homotopy types, linear logic seems to be intimately tied to generalized
vector spaces and the mathematics inherent to the latter (see Melliès,
n.d.). If this reading is correct, it may lead to new interpretations
and developments of conceptual spaces and the categorical structures
would naturally find their place in that context. But this is sheer
speculation at this point and it does not affect our main point.

5. Conclusion

We insist that this way of framing logic and metalogic is a direct
continuation of mathematical logic as it developed in the first half
of the 20th century and the rise of the abstract axiomatic method at
the same time. Category theory itself is an offspring of this period,
and as such, does not constitute a radical methodological change. It
is, undoubtedly, a rise in abstraction. It reveals new types of abstract
mathematical structures.

We hope we have convinced the reader that it is possible to iden-
tify the abstract mathematical structures underlying (fragments of, and
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extensions of) first-order logic and type theories. It is also possible to
see how the important metalogical results correspond to theorems on
these abstract mathematical structures. Finally, the invariance property
at the core of any abstract mathematical structuralism comes natu-
rally and automatically in this framework. Thus, the standard logical
systems—and some non-standard logical systems as well—find a nat-
ural place in this structuralist context. Pure logic is seen as a specific
type of abstract structure. We can thus answer our own challenge
positively and precisely. We leave to other structuralists to provide
their answer to our challenge.
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Abstract
It is well-established that topos theory is inherently connected with
intuitionistic logic. In recent times several works appeared concern-
ing so-called complement-toposes (co-toposes), which are allegedly
connected to the dual to intuitionistic logic. In this paper I present
this new notion, some of the motivations for it, and some of its con-
sequences. Then, I argue that, assuming equivalence of certain two
definitions of a topos, the concept of a complement-classifier (and
thus of a co-topos as well) is, at least in general and within the con-
ceptual framework of category theory, not appropriately defined. For
this purpose, I first analyze the standard notion of a subobject classi-
fier, show its connection with the representability of the functor Sub
via the Yoneda lemma, recall some other properties of the internal
structure of a topos and, based on these, I critically comment on the
notion of a complement-classifier (and thus of a co-topos as well).
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1. General introduction

Category theory, and especially topos theory, have changed the
way we think about the role of logic in mathematics, and, through

mathematics, perhaps also in physics. It is common knowledge that
toposes are intrinsically connected to intuitionistic logic. However,
recently there appeared several works concerning so-called comple-
ment-toposes (co-toposes), which are, supposedly, connected to a
certain type of paraconsistent logic called dual to intuitionistic, or anti-
intuitionistic, logic, which algebra is a co-Heyting one.1 It is known
that, indeed, some toposes having co-Heyting structures exhibit some
aspects of dual to intuitionistic logic (see Reyes and Zolfaghari, 1996,
and Section 5 here), and more in this matter may be discovered in the
future, but here I want to examine only some aspects of the notion of
a complement-topos.

In (Mac Lane and Moerdijk, 1994, p.161f and p.163) two def-
initions of a topos are given, which are said to be equivalent. The
whole reasoning of my paper hinges on this equivalence and in what
follows I assume its validity (although I have some reasons to doubt
it, and I plan to examine this in the future). Here I argue that the
way co-toposes are defined in the above-mentioned works is, at least
from the point of view of category theory, inappropriate. I will not
give the complete exposition of the role a dual to intuitionistic logic,
or, from an algebraic point of view, a co-Heyting structure, plays in
category theory. This is rather still a work in progress and I would like
to elaborate on this subject more extensively in future. Here I give

1 About co-toposes see (Mortensen, 1995; 2003; James, 1996; Estrada-González, 2010;
2015), about a dual to intuitionistic logic see e.g. (Goodman, 1981; Czermak, 1977;
Urbas, 1996; Kamide, 2003).
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only some arguments, I think quite convincing, against the considered
notion of a co-topos. It should be stressed that if not stated otherwise
I am considering only zero-order logic, i.e. propositional logic.

First, in Section 2, I give some motivations behind the introduction
of the concept of a co-topos, I provide the definition of this concept,
and, also for this purpose, of the notion of the so-called complement-
classifier. Later, assuming the validity of these concepts, I show some
of their consequences. In Section 3, I analyze the original concept of a
subobject classifier and show how it is connected with the requirement
that the functor Sub is representable. In the next section, I critically
comment on the notion of a co-topos basing on both the above analysis
and some other properties of toposes. In the last section, I conclude
and give some further short remarks on the presence and relevance of
the co-Heyting structure in toposes and other areas of mathematics.

2. Introduction to the alleged co-toposes

As far as I know, the first definition of a co-topos appeared in
(Mortensen, 1995, Chapter 11) (this is suggested in (James, 1996,
p.80)), written together with Peter Lavers. After that publication there
appeared subsequent publications dealing with co-toposes, see e.g.
(James, 1996; Mortensen, 2003; Estrada-González, 2010; 2015).

Let us first see what the motivations for co-toposes are. The
logic of toposes is known to be intuitionistic logic (IL), although
one should be careful with such a simplification because, as Colin
McLarty pointed out, “topos logic coincides with no intuitionist logic
studied before toposes” (see McLarty, 1995, p.vii).2 In one of the

2 In short, higher-order intuitionistic logic of toposes agrees with traditional Heyting’s
rules of inference for connectives and quantifiers, but the disjunction and existence
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approaches, a topos is considered as a generalization of a topological
space. The algebra of open sets (of some topological space) is the
Heyting algebra and therefore it forms a semantics for IL (cf. Stone,
1938; Tarski, 1938) on topological interpretation of IL). However, a
topology can be equivalently specified by the family of closed sets.
Incidentally, it is closure operation and closed sets, rather than interior
operation and open sets, that were first analyzed: McKinsey and
Tarski first considered closure algebra as an algebra of topology (see
(McKinsey and Tarski, 1944; 1946)) and the first general and explicit
definition of a sheaf on a space was described by Leray in terms of the
closed sets of that space (cf. Mac Lane and Moerdijk, 1994, p.1). In
this context we can better understand Mortensen’s motivation when
he writes (see Mortensen, 1995, p.102):

Specifying a topological space by its closed sets is as natural as

specifying it by its open sets. So it would seem odd that topos

theory should be associated with open sets rather than closed

sets. Yet this is what would be the case if open set logic were

the natural propositional logic of toposes. At any rate, there

should be a simple ‘topological’ transformation of the theory

of toposes, which stands to closed sets and their logic, as topos

theory does to open sets and intuitionism. Furthermore, the

logic of closed sets is paraconsistent.

properties, which are a traditional part of intuitionism, do not hold in toposes in general
(see McLarty, 1990, p.154). Although toposes are intrinsically connected with (higher-
order) intuitionistic logic, they were not simply designed to agree with it (see McLarty,
1990, p.152f). Lambek and Scott even claim: “Nothing could have been further from
the minds of the founders of topos theory than the philosophy of intuitionism” (see
Lambek and Scott, 1994, p.125).
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Mortensen gives the following definition of a complement-
classifier (see (Mortensen, 1995, p.104f), I keep the exact same word-
ing, changing only F to false, a toA, and b toX in order to standardize
the notation in this paper):

A complement-classifier for a category E with terminal object
1, is an object Ω together with an arrow false : 1 → Ω satis-
fying the condition that for every monic arrow f : A X

there exists a unique arrow χf such that

A X

1 Ω

f

! χf

false

is a pullback. χf is the complement-character of f .

Then it is stated what a complement-topos is (I quote from
(Mortensen, 1995, p.105)):

An (elementary) complement-topos is a category with initial

and terminal objects, pullbacks, pushouts, exponentiation, and

a complement classifier.

In what follows, I shall use the term complement-topos (or in short
co-topos) meaning the notion as it is described above by Mortensen
(the same notion is also used in e.g. (Estrada-González, 2010; 2015)).
As an example of a different definition of a co-topos see e.g. (Angot-
Pellissier, 2015), where “cotopos” is considered as ‘a closed co-
Cartesian category with quotient classifier” (see p.189), which seems
to be a different notion, although the author suggests he is considering
the same notion and makes reference to unpublished work by James
and Mortensen.

As I mentioned in Section 1, my aim in this paper is not a thor-
ough analysis of connections between dual to intuitionistic logic and
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toposes, nor a comprehensive study of papers concerning co-toposes.
I want to scrutinize only some aspects of the notion of a complement-
topos. I argue that the arrow 1→ Ω, distinguished (up to isomorphism)
by subobject classifier, may not be arbitrarily interpreted, and thus
simply renaming it as false is, at least form the point of view of
category theory, inappropriate.

Let me first show some of the consequences of such a definition
(cf. e.g. Mortensen, 1995; Estrada-González, 2010), assuming for a
moment its validity. Having the complement-classifier false : 1→ Ω

(which will be denoted also as ⊥), we define, by analogy with the
standard approach,

(1) true ≡ ⊤ := χ01 ,

where 01 is the only, and always existing, arrow from the initial object,
0, to the terminal object, 1; this arrow is a monomorphism. The logical
connectives are also defined by analogy with the standard approach3,
but we have to take into account that now χf is the complement-
characteristic arrow. We have therefore:

¬ := χ⊤ ,

⌣ := χ⟨⊥,⊥⟩ ,

⌢ := χIm[⟨⊥,idΩ⟩,⟨idΩ,⊥⟩] ,

− := χe ,

where ⟨f, g⟩ is the product arrow of f and g (with respect to the pro-
jections π1, π2 on its first and second factor, respectively), [f, g] is the
co-product arrow of f and g (with respect to the standard injections),

3 I assume the Reader’s familiarity with the standard definition of logical connectives
in a topos, which can be found in e.g. (Goldblatt, 2006, p.139).
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Imf is an image of f , i.e. the monic of the epi-monic factorization
(which, in a topos, exists for any arrow), and e is the equalizer of ∨
and π1. Therefore, in the process of such a dualization: (i) conjunction
and disjunction interchange, and (ii) in place of implication we get
the so-called pseudo-difference.

As a result
(
E(X,Ω),⊑

)
changes the order, so it becomes a

co-Heyting algebra.
(
Sub(X),⊆

)
remains a Heyting algebra, as it

depends only on the factorization of the appropriate arrows and thus is
independent of the (complement-)classifier. In this way,

(
Sub(X),⊆

)
and

(
E(X,Ω),⊑

)
are no longer isomorphic Heyting algebras. The ar-

row ⊥, the one distinguished (up to isomorphism) by the complement-
classifier, is now the lowest element of

(
E(1,Ω),⊑

)
.

If we define (as is the usual way) E |= α if and only if, for every E-
evaluation V , it is V (α) = ⊤ then we get a different set of tautologies.
Let me analyze one example, for which I use the subscript “S” for the
notation of standard toposes, and no subscript for the present case of
co-toposes. Because the definition of co-topos, in comparison with
the one of topos, assumes the same properties for certain arrows, but
gives only different names (or interpretations) to them, we have that
e.g. the arrow “⊥” (defined as χ01 ) in a standard topos (i.e. ⊥S , in our
current notation), is the same as ⊤ (defined in (1)), and thus we have
⊥S = ⊤. The situation is analogous for the other arrows. Now, for
any (standard) topos E we have:

E |=S ∼ (φ∧ ∼ φ) .

In IL we have: if ∼ψ = 1, then ψ = 0 (but not vice versa). Thus for
all E-evaluations we have trivially (assuming, for convenience, that φ
is an atomic sentence)
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VS(φ∧ ∼ φ) = ⊥S
=⌢S ◦ ⟨VS(φ),¬S ◦ VS(φ)⟩
=⌣ ◦ ⟨V (φ),¬ ◦ V (φ)⟩
= V (φ∨ ∼ φ)
= ⊤ .

This means that for any co-topos we would have E |= φ∨ ∼ φ .

3. The subobject classifier

In order to analyze the question of the appropriateness of the definition
of a complement-classifier and that of a co-topos, let us first comment
on the definition of standard subobject classifier and that of topos. A
subobject classifier may be defined in the following way:

Definition 1. If C is a category with a terminal object 1, then the
subobject classifier for C is an object Ω together with an arrow
true : 1→ Ω such that for every monic f : A X there is a unique
arrow χf : X → Ω which makes the following diagram a pullback:

a d

1 Ω .

f

! χf

true

The important question for us is whether (in the context of a topos)

(A) the word “true” in the above definition is a meaningful and
non-removable part of it,
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and, in such case, we should add a comment about what does “true”
mean already at this level (without having yet defined any order on
E(1,Ω)); or whether

(B) instead of “. . . together with an arrow true : 1→ Ω such that . . . ”
we could just have “. . . together with a certain arrow η : 1→ Ω

such that . . . ” (where η is just a label added for convenience of
referring to it).

Of course, in both cases the distinguished arrow (true or η) is defined
up to an isomorphism, but the question is whether the interpretation
of it as true is an additional feature of the arrow that we are assuming
(option (A)), or it is the consequence of the definition (option (B)). In
the latter case we can post factum add this name in the very definition
and obtain the standard textbook definition.

In my opinion, (B) is the only correct option. A subobject clas-
sifier is considered mainly in order to define a topos as a Cartesian
closed category with a subobject classifier. However, a topos may also
be defined without any reference to truth. Namely, from the equiv-
alence of the two definitions of the topos (Mac Lane and Moerdijk,
1994, p.161f and 163), instead of a subobject classifier we can assume
an object Ω and for each object X an isomorphism

Sub(X) ∼= Hom(X,Ω) ,

natural in X . In other words, the functor Sub is required to be repre-
sentable (the subobject classifier being its representing object).

Representability of Sub

Let us briefly see how representability of the functor Sub is con-
nected with the standard definition of a subobject classifier. Repre-
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sentability of Sub means that there is a natural isomorphism between
the Sub functor and the contravariant Hom-functor Hom(−,Ω) (with
Ω being the representing object), which we shall denote as β. The
situation can be pictured as

(2) Eop Set .

Hom(−,Ω)

Sub

β

Now, from the Yoneda lemma we know that

Nat
(
Hom(−,Ω), Sub

) ∼= Sub(Ω) ,

and every natural transformation α from Hom(−,Ω) to Sub is com-
pletely determined by an element of Sub(Ω) (i.e., by a subobject of
Ω), which is αΩ(idΩ). Namely, for any object X of E , a component
αX is an arrow between sets Hom(X,Ω) and Sub(X), and its action
on any arrow g : X → Ω is given by

αX(g) = Sub(g)
(
αΩ(idΩ)

)
,

where Sub(g) is an arrow in Set between Sub(Ω) and Sub(X),
which takes a monic and by pulling it back along g gives another
monic. αΩ(idΩ) being a subobject of Ω can be denoted as a monic
Ω0 Ω. Then, the action of αX can be described as follows: for any
g : X → Ω, αX(g) gives a subobject ofX , let us denote it asA X ,
which is given by the following pullback:

A X

Ω0 Ω .

g
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It can be shown that if α is a natural isomorphism, then the corre-
sponding subobject αΩ(idΩ) is not any subobject of Ω, but precisely
a global element of it, i.e., an arrow 1 → Ω (see e.g. Mac Lane
and Moerdijk, 1994, part of the proof on p.33f).

From the representability of Sub we know that among all the
natural transformations {α} there is at least one that is actually a
natural isomorphism, which we have denoted as β (see (2)). We now
know that such β is completely determined by βΩ(idΩ), being a global
element of Ω, which we shall denote as η : 1 → Ω. In this way, for
any object X we have an isomorphism (a bijection) βX between
Hom(X,Ω) and Sub(X) given by a pullback (to avoid confusion
with previous notation, we may now denote the arrow from Sub(X)

as f , and the corresponding arrow from Hom(X,Ω) as χf )

A X

1 Ω ,

f

! χf

η

which is precisely the bijection between characteristic morphisms and
subobjects, as assumed in the definition of subobject classifier.

The above considerations suggest that the interpretation of the
arrow η : 1→ Ω as true is not an additional feature the arrow has to
fulfill, but it follows, as we shall see more clearly in the next section,
from the role this arrow plays in the structure of a topos, as option (B)
(on page 119) points out.

4. Comments on the notion of a co-topos

As mentioned in Section 1, I assume in this paper that the two defi-
nitions of a topos as given in (Mac Lane and Moerdijk, 1994, p.161f
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and 163) are equivalent (as stated in this book). In my opinion, this
equivalence should be scrutinized, and I plan to examine this in future
work, but here I take it for granted. The whole argumentation of my
paper hinges on this equivalence, and so, if it is false, the conclusions
might also (but do not have to) be false. Nevertheless, I think that a
lot of observations in this paper are still valuable (at least as valid
conditional reasoning based on some assumptions).

First, a topos may be defined without any reference to the notion
of truth, thus making impossible the dualization suggested in the
approach under consideration.

Moreover, we have to pay attention to the internal structure of a
topos. From the categorical point of view, it is the internal structure
that plays a major role, and if the category theory is treated as a foun-
dation of mathematics, then the internal structure is the only one we
have. Boolean algebras, which are the Tarski–Lindenbaum algebras
of the classical logic, are self-dual in the sense that they preserve the
property of being Boolean after changing the order. Such a change
of the order swaps the top element (truth) with the bottom (false),
and the conjunction (meet) with the disjunction (join) (nota bene, this
property of Boolean algebras does not imply that the notions of truth
and falsity are utterly interchangeable for, say, the working mathe-
matician). For Heyting algebras, which are the Tarski–Lindenbaum
algebras of the intuitionistic logic (or, more precisely, for intermediate
logics), the situation is not the same. The dual of a Heyting algebra is a
co-Heyting or Brouwer algebra associated with a dual to intuitionistic
logic. Now, it is a Heyting algebra structure that is fundamentally4 and

4 By this I mean the universality of this structure in all toposes. A co-Heyting structure
can also be present internally in toposes but only in some of them (e.g. in Boolean
toposes, but, as we shall soon see, there is a much larger family of toposes that also
exhibit a co-Heyting structure).
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internally present in all toposes. We have already mentioned that the
poset

(
Sub(X),⊆

)
is a Heyting algebra for any objectX in any topos

(independently of the (complement-)classifier). This is an example
of the external Heyting algebra, as the set Sub(X) may not be an
object of a given topos. There is, however, an internal version of this
statement, which I formulate in the form of a proposition without
proof, based on (Mac Lane and Moerdijk, 1994, p.201):

Proposition 1. For any objectX in any topos E , the power object PX
(or equivalently the exponential ΩX) is an internal Heyting algebra.
(In particular, so is the subobject classifier Ω = P 1.) For each X in
E the internal structure on Ω makes Hom(X,Ω) an external Heyting
algebra so that the canonical isomorphism

(3) Sub(X) ∼= Hom(X,Ω)

is an isomorphism of external Heyting algebras.

In the proof of the theorem on which this proposition is based, it
is shown that η : 1→ Ω is the top element of the object Ω taken as an
internal Heyting algebra.5 On the ‘external level’, assuming (3), we
may easily see that η is also the top element in the external Heyting
algebra Hom(1,Ω). In order to achieve this let us note that η : 1→ Ω,
having the codomain Ω, is the characteristic arrow for some subobject
of its domain, i.e. of 1. If we pull η back along itself, we get that
η = χid1 . Now, because id1 is the top element of the Heyting algebra
Sub(1), by means of (3) we get our result that η is the top element in

5 The proof may be found on pages 201f of (Mac Lane and Moerdijk, 1994). The
authors denote the η arrow as true from the very beginning, but, as I have argued
in the previous section and as the proof under consideration shows, this notation (or
interpretation) is the consequence of its definition in the context of a topos.
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the external Heyting algebra Hom(1,Ω), which is understood as the
algebra of truth-values of a topos and plays a special role in its logical
structure.

On the basis of the above considerations, I argue that the distin-
guished arrow η : 1→ Ω cannot be interpreted arbitrarily. Therefore,
the opinion that: “To dualize, simply rename T with F, and relabel the
classifier arrow chif as chi-barf” (see Mortensen, 2003, p.259) cannot
be considered valid. On the contrary, no matter how we denote the
distinguished arrow, by T, F, η or by anything else, if it obeys the
required conditions, then it will play the role of the top element of
both, the internal Heyting algebra Ω, as well as the external Heyting
algebra Hom(1,Ω), and thus the role of truth. At the same time, let
me remind that the subobject classifier, together with its true arrow, is
defined (only) up to isomorphism, which is a common (and proper)
feature in category theory.

5. Summary and further remarks

In this paper, I have given some reasons why, assuming the equiva-
lence of the two definitions of a topos in (Mac Lane and Moerdijk,
1994, p.161f and 163), I think the way co-toposes are defined in
the above-considered works (Mortensen, 1995; 2003; James, 1996;
Estrada-González, 2010; 2015) is not appropriate, at least within the
conceptual framework of category theory.

This does not mean that there is no place for co-Heyting structures
and possibly some manifestations of dual to intuitionistic logic in
toposes. On the contrary, apart from the whole class of Boolean
toposes (which are in this respect a trivial instance of the presence
of a co-Heyting structure), a vast class of toposes is known that
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exhibit the co-Heyting structure of subobjects (and thus bi-Heyting,
because, as I have mentioned, the Heyting structure is always present).
Lawvere (1991) very concisely pointed out that “In any presheaf topos
(and more generally any essential subtopos of a presheaf topos), the
lattice of all subobjects of any given object is [. . . an] example of a
co-Heyting algebra” (Lawvere, 1991, p.280). This line of reasoning
was pursued by Reyes and Zolfaghari in (Reyes and Zolfaghari, 1996)
where they proved the above Lawvere’s assertion and introduced a
new approach to the modal operators, based on the existence of the
two negations for bi-Heyting structures. The bi-Heyting algebras and
their logics were first studied, according to my knowledge, by Cecylia
Rauszer (1974a,b), where she uses the name semi-Boolean algebra
for bi-Heyting algebra, and Heyting–Brouwer logic, or, in short, H-B
logic, for its logic.

It seems that the co-Heyting structure is also connected with
a notion of ‘boundary’, since now the intersection of an element
of a co-Heyting algebra with its co-Heyting complement (negation)
may not be empty (zero). The ’boundary’ defined in this way may
also exhibit the Leibniz product rule and perhaps be developed into
some further geometric structures (cf. Lawvere, 1991; Majid, 2008,
especially pp.123–126).
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No-signaling in topos formulation
and a common ontological basis for
classical and non-classical physical

theories

Marek Kuś
Warsaw University of Technology,

International Center for Formal Ontology

Abstract
Starting from logical structures of classical and quantum mechanics
we reconstruct the logic of so-called no-signaling theories, where the
correlations among subsystems of a composite system are restricted
only by a simplest form of causality forbidding an instantaneous
communication. Although such theories are, as it seems, irrelevant for
the description of physical reality, they are helpful in understanding
the relevance of quantum mechanics. The logical structure of each
theory has an epistemological flavor, as it is based on analysis of
possible results of experiments. In this note we emphasize that not
only logical structures of classical, quantum and no-signaling theory
may be treated on the same ground but it is also possible to give to all
of them a common ontological basis by constructing a “phase space”
in all cases. In non-classical cases the phase space is not a set, as
in classical theory, but a more general object obtained by means of
category theory, but conceptually it plays the same role as the phase
space in classical physics.

Keywords
no-signalling, topos, quantum logic.
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Ontological assumptions of classical and quantum picture of the
world differ significantly, despite the fact that both descriptions

attempt to grasp the structure of the same reality. The fact that they
offer a glance from two different points of view—macroscopic and
microscopic, should not interfere with a pragmatic request that, at
least to compare both theories, we should have in both of them some
common ‘elements of reality’, e.g., some observables that pertain to
the same physical quantities on both levels, like ‘position’, ‘momen-
tum’, ‘angular momentum’ etc. An alternative (let’s call it Kuhnian)
approach would be to deny connections between concepts used in
both theories pointing to (seemingly) the same properties of physical
systems, (e.g., Newtonian and Einsteinian mass (Kuhn, 1970)). The
latter approach is not particularly attractive from the point of view of
a practicing physicist. It leaves no room for many useful and fruitful
procedures as e.g., a ‘semiclassical/classical approximation’.

Classical systems are described in terms of a phase space, usu-
ally a differential manifold with some additional (symplectic/Poisson/
metric) structures. Observables, i.e. physical quantities that we can
measure, or, in general to which we can ascribe certain numerical
values characterizing the observed system, are functions on the phase
space. Values of observables, like positions, momenta, energies, angu-
lar momenta etc., are some intrinsic properties of physical systems
(particles, ensembles of particles, rigid bodies, etc.). They can change
in time, but are properties that are possessed by systems alone and
do not depend on whether or not they are actually measured at a par-
ticular moment. At least in principle, we can measure them without
disturbing the system. Consequently, measurements can be performed
in an arbitrary order, or even simultaneously, and provide the same
results. We can thus pose questions about exact values of, say, the
position and the momentum of a particle. Usually, however, due to



No-signaling in topos formulation and a common ontological basis. . . 131

e.g., inaccuracies of measurements we inquire into the probability that
our particle is in a certain subset of the phase space. Such a probability
is determined by the volumes of the relevant subsets. Physical states
can thus be identified with probability distributions on (measurable)
subsets of the phase space. Mean values (results of experiments) can
be calculated using these distributions.

In quantum mechanics we do not have a clear notion of a ‘phase-
space’ in the form of a manifold. A backbone structure is provided
by a Hilbert space H, observables are identified with self-adjoined
operators, and states with non-negative, trace-class operators (density
matrices). We may ascribe to each system some properties that pretend
to be quantum analogues of classical ones, like positions, momenta,
angular momenta, energies, etc. (and some others that seem to be of
a purely quantum mechanical nature, like spin, isospin, strangeness,
hypercharge etc.). However, they are no longer intrinsic in the classical
sense. They are not ‘carried’ by a system during its evolution, rather
they are ‘brought to life’ by an act of measurement.

Hence, it is hard to find a unifying ontological basis for classical
and quantum physics. Fundamental elements of physical reality, as
positions, momenta, angular momenta, etc. have different ontological
status in both theories. For everyday physical practice this does not
pose any clear and present danger. Ultimately, physics is an exper-
imental science. It aims at answering experimental questions about
outcomes of measurements putting emphasis on the epistemology,
at the price of moving apart, or even totally discarding ontological
issues.

An attempt to unify classical and quantum physics on common
epistemological ground goes back to Birkhoff and von Neumann
(1936) in form of the so-called quantum logic. The main idea is to an-
alyze the structure of elementary experimental question/propositions
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about a system. In classical physics, elementary propositions can be
reduced to statements that values of observed quantities (positions,
momenta) belong to a certain subset of the phase space. The logi-
cal structure of the set of such propositions, determined by the rules
concerning their negations, conjunctions and disjunctions, isomorphi-
cally reflects the Boole algebra structure of the set of (measurable)
subsets of the phase space. One of the fundamental features of the
resulting lattice1 is the distributivity law, allowing for the distribution
of conjunctions over disjunctions and vice versa.

In quantum mechanics elementary propositions concern posi-
tions of state vectors (characterizing a state of a system) with respect
to eigenspaces of observables. As in the classical case we can ask
composite questions corresponding to conjunctions and disjunctions.
However, the ensuing logical structure is no longer distributive. The
logic of a system described by a Hilbert space H is represented by
the orthomodular lattice of closed subspaces in H. The involution
sending a subspace to its orthogonal complement represents logical
negation, still as in the classical case, satisfies the law of an excluded
middle: measuring the spin of an electron will yield either ‘up’ or
‘down’. The resulting lattice is, however, non-distributive: x-spin up
does not imply x-spin up and z-spin up or x-spin up and z-spin down.
Having the lattice stand for the logic of the system, one derives its
probability theory, where states assign probabilities to elements of the
lattice, respecting the underlying structure (order and complementa-
tion). These states turn out to coincide with the usual density matrices
by the Gleason theorem (Gleason, 1957).

1 A partially ordered set in which every two elements have a unique supremum—the
set-theoretical sum on the level of subsets and conjunction on the level of proposition,
and infimum—the set-theoretical intersection of subsets and disjunction, respectively.
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Having two examples of different theories pertaining to the same
physical reality, we are tempted to think about other similar construc-
tions. From what we know now, it is hard to construct a successful
theory that e.g., supersedes quantum mechanics (Aaronson, 2004). In-
stead we can identify some common epistemic structures in classical
and quantum mechanics encoded in logics of both theories, i.e. the
logical structures of the sets of their propositions, and try to construct
similar, reasonable theories.

One of such attempts was presented by Popescu nad Rohrlich
(1994) in the form of so called no-signaling boxes. They started from
a paradigmatic correlation experiment, that can be performed both
on classical and quantum level depicted schematically in Fig.1. The
model is supposed to describe the most elementary system composed
of two separated subsystems. We can think of inputs as observables
that we choose to measure, and outputs as the results of measurements.
In the simplest case we have two observables, encoded (labeled) by 0

and 1, each of which can take two values 0 and 1. Performing multiple
measurements we will obtain a sequence of outcomes allowing us
to determine the relative frequency P (αβ|ab) of getting any pair
of outputs αβ ∈ {−1, 1} × {−1, 1}, given any pair of inputs ab ∈
{0, 1} × {0, 1}.

In order to have a legitimate interpretation of P : {−1, 1} ×
{−1, 1}×{0, 1}×{0, 1} → R in terms of probability, it should fulfill
the following requirements,

1. 0 ≤ P (αβ|ab) ≤ 1 (positivity),
2.

∑
αβ P (αβ|ab) = 1 (normalization),

3.
∑

α P (αβ|ab) =
∑

α P (αβ|cb);
∑

β P (αβ|ab) =∑
β P (αβ|ac) (no-signaling).
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Figure 1: A two-system correlation experiment

The last property, non-signaling, is supposed to encode the principle of
relativistic causality, i.e. what happens in one box does not influence
the other, obeyed by spatially separated subsystems. We will refer
to this particular example of non-signaling boxes as the (2, 2)-box
world.

For a particular instance of (2,2)-box world we may postulate
concrete values of P (αβ|ab) fulfilling 1.-3. Popescu and Rohrlich
(1994) proposed the following,

(1) P (αβ|ab) =



00 01 10 11

−− 1/2 1/2 1/2 0

−+ 0 0 0 1/2

+− 0 0 0 1/2

++ 1/2 1/2 1/2 0

.
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Usually P (αβ|ab) ̸= P (α|a)P (β|b), where P (α|a) and P (β|b)
are one-particle probability distributions of measurements results of a
and b. One introduces thus the correlations,

(2) ⟨ab⟩ =
∑

α,β∈{−1,1}
αβP (αβ|ab).

It can be now checked that in the classical and quantum cases the
following combination of correlations

(3) S := |⟨a1b1⟩+ ⟨a2b1⟩+ ⟨a2b2⟩ − ⟨a1b2⟩|

that, in principle, can achieve the maximal value of 4 (each of the term
is not larger than 1 in absolute value) is further restricted. Classically
|S| ≤ 2 (Bell (1964) inequality in the CHSH form (Clauser et al.,
1969)) whereas in quantum mechanics |S| ≤ 2

√
2 (Tsirelson’s bound

(Cirel’son, 1980)). For the Popescu-Rohlich box (1) we have S = 4.
In the quantum logic approach the elementary admissible ques-

tions are,

• ‘Does our system belong to a (measurable) subset of the phase-
space?’ (classical mechanics);

• ‘Is the result of measuring the projection on a closed subspace
of the Hilbert space of the system equal to 1?’ (quantum me-
chanics);

• ‘Does measuring a on a subsystem gives an outcome α?’
(Popescu-Rohrlich).2

One can now combine elementary questions by the conjunction and
disjunction and negate them. As already said the resulting lattice is
a Boolean algebra in the classical case and so-called orthomodular

2 In fact we should ask about an outcome of a joint measurement of a in the first
subsystem and b in the second one.
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lattice which is non-distributive3 (Birkhoff and von Neumann, 1936).
For the Popescu-Rohrlich box (1) the appropriate one is that of a
so-called orthomodular poset (for details see (Tylec and Kuś, 2015;
Tylec and Kuś, 2018)). The resulting structure has some common
features with quantum mechanics, e.g., the truth of the alternative
p ∨ q of statements p and q does not imply that p is true or q is true
(the ‘Schrödinger cat’ paradox). Moreover, as in quantum mechanics
measurements are, in general, destructive. Performing a measurement
changes irreversibly a state of a system and does not allow its ex-
act reconstruction (Tylec and Kuś, 2015). On the other hand, from
some points of view, Popescu-Rohrlich boxes are ‘more classical’
than ‘quantum mechanical’, since in both theories the Heisenberg
uncertainty relations are not fulfilled (Tylec and Kuś, 2015).

As already emphasized, the quantum logic approach has a rather
epistemic flavor. We concentrate on learning system’s properties from
observations/measurements. Instead, the category theory seems to
provide a path to ‘restore a common ontology’ for all considered
theories. One can cast the program into a sequence of goals.

• Find a well behaved phase space for quantum and a no-
signaling systems.

• Find a logical structure of the set of propositions.
• Reproduce the probabilistic properties of the theory.

Since the well understood ontological assumptions of classical the-
ory are, as argued above, connected to the notion of the phase-space, it
would be desirable to construct phase-spaces for non-classical theories
in such a way that they resemble ‘as much as possible’ the classical
one. This opens a possibility to interpret quantum mechanics and no-
signaling theories in a realistic sense, like we do it in classical physics,

3 Conjunctions do not distribute over alternatives and vice versa.



No-signaling in topos formulation and a common ontological basis. . . 137

where we can assign truth values to propositions without reference
to measurements. Hence, we can maintain that propositions refer to
some ‘real objects’ or ‘real properties’ independent of observers and
measurements. This is exactly what I call a ‘restoration of a common
ontology’ for all theories considered here.

As it will be clear, we have to be ready to pay some price. The
resulting ‘logic’ of a phase-space need not to be a Boolean one, so
the tertium non datur principle need not to be fulfilled. Nevertheless
the probabilities calculated on such a ‘logic’ (just as the probabilities
in classical physics calculated on the Boolean logic of subsets of the
phase space) will reproduce quantum mechanical and no-signaling
results. Moreover, what separates logics of non-classical theories from
the classical one, i.e. its non-distributivity, responsible for nearly all
‘paradoxes’ of quantum mechanics (and no-signaling theories) will be
avoided.

For quantum mechanics, this can be done within a program pre-
sented by Isham and Döring (2008a,b,c,d), in terms of the category
theory or, more specifically, the topos theory. In what follows I will
employ a slightly different approach (Wolters, 2013), using the same
mathematical apparatus of categories and topoi, proposed originally
by Heunen, Landsman, and Spitters (2009; 2011) called ‘Bohrifi-
cation’4. In (Gutt and Kuś, 2016) we extended the construction to
no-signaling boxes. Finding an analog of a classical phase-space is,
in a certain sense, the principal goal.

Let me shortly describe main mathematical ingredients of the
above outlined approach. A category is a structure consisting of ‘ob-
jects’ connected by ‘arrows’. From the definition we may compose the
arrows (an arrow from an object to a second one followed by another
arrow from the second object to a third one) and the composition is

4 For the explanation of the chosen name consult the cited papers of Heunen et al.
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associative. A very intuitive example of a category is the category
of sets, Set, where the objects are sets, and the arrow connecting a
set A to a set B is a function from A to B.5 A topos is a category
with some additional properties chosen in a way that results in a cer-
tain generalization of Set. The appropriate formal definition and all
needed technical details can be found in one of numerous books on
categories and topoi (e.g., Goldblatt, 2014) and will not be invoked
here.6 What is important is that basic constructions involving sets,
like e.g., exponentiation AB , i.e, the set of all functions from A to B,
have their equivalents for topoi, and that (by definition) each topos
is equipped with the, so-called, sub-object classifier. The latter is a
special object of the considered category, the meaning of which can
be understood by taking again as an example a set S and its subsets.
We can express the fact that A is a subset of S by considering a
characteristic function of A, i.e., the function from S to the set {0, 1}
which takes the value 1 on s ∈ S if a ∈ A and the value 0 other-
wise. The two-element set {0, 1} is the ‘subobject classifier’ making
Set a topos. The fact that the subobject classifier is a two-element
set (we can refer to value 1 as ‘true’ and to 0 as ‘false’) is clearly
strictly connected to the Boolean structure of the algebra of subsets
(and to the ‘logic’ of a classical phase-space described previously). In
general topos the subobject-classifier need not be a two-element set,
but some more general object in the category. As a consequence the
‘logic’ of a topos need not be Boolean any longer, but it is a so-called
Heyting algebra, which is distributive, but, in general, the principle

5 From the point of view of the category theory Set is not so trivial, since the collection
of its objects is not a set—such a category is called a ‘large category’. As an example
of a ‘small category’ employing sets as objects we can take a category of open subsests
of some topological space (‘a classical phase-space’ in the sense described previously).
6 For a clear exposition of applications in quantum physics (Flori, 2013) and (Flori,
2018) are, probably, the best choice.
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of excluded middle is no longer valid. A nice example is a lattice
of open subsets of a topological space. It is partially ordered by the
set-theoretic inclusion and, as in the case of subsets of some set, we
have here the ordinary set-theoretical algebraic operations of sum and
intersection corresponding to alternative and conjunction, but since
the set-theoretical completion of an open set is not open. we have to
take the interior of the completion to achieve the proper representation
of negation. But then the principle of excluded middle is not fulfilled,
since the sum of an open set and the interior of its completion is not
the whole space, in contrast to the case of subsets of a set S, where a
subset A and its completion S − A sum up to the whole S (tertium
non datur). Obviously the lattice remains distributive, since sums
distribute over intersections and vice-versa.

Roughly speaking (some technical refinements are needed to end
up with a proper result, see the cited papers of Heunen et al.), one
finds a well-behaved phase space by constructing an ‘internal logic’
(a Heyting algebra) of some topos and identifying this very topos
with the looked-for phase-space. In the construction of Heunen et
al., concerning quantum mechanics, the starting point is the set C

of commuting subalgebras (‘contexts’) of observables on the Hilbert
space H instead of the set of all orthogonal projections acting on it.
Each such context has a well defined physical meaning as a set of
compatible measurements. The set of contexts partially ordered by
inclusion is treated as a category with contexts as objects and arrows
as inclusions. The construction of the ’internal logic’ goes through
several technical steps (again, for details consult (Heunen, Landsman
and Spitters, 2009; Heunen, Landsman, Spitters and Wolters, 2011))
ending with a topos which is identified with the ’phase-space’ we
were looking for. In a natural way one defines also states of a systems,
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and what is most important, a method of calculating probabilities
of outcomes of experiments (reproducieng the quantum mechanical
results).

In (Gutt and Kuś, 2016) the above construction was extended
to no-signaling boxes. Here we do not have a natural Hilbert space
structure as a playground, consequently thus a natural analogue of
commuting algebras is lacking. Nevertheless, one can consistently
define contexts (situations where measurements are compatible). As a
result it was possible to define an appropriate phase-space Σ, states
of the box-world and probabilities on Σ reproducing the correlation
structure in it. Hence, in terms of category theory one can ‘restore
the ontology’ (phase-space) also for the Popescu-Rorlich boxes. The
resulting phase space is, again, not a set, but a more general object,
namely a particular topos. Thus all three theories are put on the
same level with phase spaces described by appropriate topoi. This
suggests a hypothesis that the approach is, in some sense, universal
and applicable also to other, possible ‘generalizations of quantum
mechanics’ of the whole procedure.

For quantum mechanical systems other approaches of general-
izing the classical phase-space descriptions were considered in the
past (and are still in use). The most popular employs the classical
phase-space parameterized by positions and momenta at the price
of lack of possibility to define in a consistent way positive-definite
probability functions reproducing quantum mechanical results (using
instead so called ‘quasiprobabilities’ like, e.g., the Wigner function).
It is not clear how one relates this approach to the topos-theoretic one
described above. For no-signaling theories it is even harder, since no
starting point (a classical phase-space on which some quasiprobabili-
ties are defined) is easy to identify.
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Quantum contextuality as a
topological property, and the

ontology of potentiality

Marek Woszczek
Adam Mickiewicz University in Poznań

Abstract
Quantum contextuality and its ontological meaning are very contro-
versial issues, and they relate to other problems concerning the foun-
dations of quantum theory. I address this controversy and stress the
fact that contextuality is a universal topological property of quantum
processes, which conflicts with the basic metaphysical assumption of
the definiteness of being. I discuss the consequences of this fact and
argue that generic quantum potentiality as a real physical indefinite-
ness has nothing in common with the classical notions of possibility
and counterfactuality, and that also it reverses, in a way, the classical
mirror-like relation between actuality and definite possibility.

Keywords
quantum contextuality, the Bell–Kochen–Specker Theorem, quantum
ontology, potentiality, ontic indefiniteness, sheaf theory.

Quantum contextuality is a generic property of quantum systems,
which is at the same time one of the most contentious issues in

the discussions concerning the ontology of quantum theory. There are
several reasons for the status of contextuality being so puzzling: some
more historical, going back to the early days of quantum mechanics
and some more or less hazy discussions around Niels Bohr’s philo-
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sophical arguments; others purely theoretical, related to the general
problems and contemporary analyses concerning the interpretation of
the theory.

However, despite these controversies, there is a growing abun-
dance of experimental tests of contextuality, both state-dependent
(e.g. Liu et al., 2009; Bartosik et al., 2009; Lapkiewicz et al., 2011;
Ahrens et al., 2013; Borges et al., 2014; Marques et al., 2014; Singh
et al., 2019) and state-independent (e.g. Amselem et al., 2009; Kirch-
mair et al., 2009; Zu et al., 2012; Huang et al., 2013; Zhang et al.,
2013; D’Ambrosio et al., 2013; Cañas et al., 2014; Dogra, Dorai
and Arvind, 2016; Leupold et al., 2018; Qu et al., 2020), which have
been conducted on many diverse physical systems, including tests
using the weak (noninvasive) coupling between systems, as well as
recently under the strict no-signaling conditions between successive
measurements (Xiao et al., 2018). It has also been proposed that con-
textuality is one of Nature’s fundamental physical resources, which
has been shown to be crucial in quantum information processing, also
in the multiqubit setting (Raussendorf, 2013; Howard et al., 2014;
Bermejo-Vega et al., 2017).

Nevertheless, there is no single mathematical framework for study-
ing contextuality as a fundamental physical property, and there also
exists a long tradition of questioning if there is anything nontrivial
or mysterious about quantum systems being ‘contextual’, with some
authors doubting whether it is possible to directly test it in a lab at
all (see e.g. Hermens, 2011). Such a deep discrepancy between view-
points is troubling if one seriously acknowledges contextuality to
be a generic property of quantum systems and quantum information
processing, since it makes issues related to the ontology of physics
even more obscure. After all, if the very physical understanding of
quantum contextuality were wholly dependent on some freely cho-
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sen philosophical presuppositions, it would be impossible to even
define it in a simple and uncontroversial way, e.g. while preparing and
performing experimental tests, which also have their basic tacit on-
tology of events, measurements and operations. In short, there seems
to be a worrying cleft between recognizing the fundamental nature
of contextuality as a physical resource and its uncertain philosophi-
cal interpretation, which seems to be a matter of taste. I would like
to argue that it is impossible to avoid some free rein in ontological
interpretation, but it is not as free as it appears to be, and we should
treat contextuality as a central challenge for quantum ontology.

1. Quantum contextuality and ontology: more than
just another problem

In general terms, contextuality is the impossibility of a consistent,
global assigning of the pre-existing {0, 1}-values (i.e. binary defi-
nite properties) to all possible synchronic physical observables on
a quantum system for dim > 2, which is a serious deviation from the
classical-mechanical case where such assignments are in principle
always possible. In a more physical framing, this means that there
is an unavoidable contradiction between such a pre-assignment of
values and the intuitive expectation that the measurement outcome
does not depend on other comeasurable observables. Mathematically,
this is expressed by the celebrated (Bell–)Kochen–Specker Theorem
(henceforth, BKS) proved in 1966–1967 for finite sets of observ-
ables (Kochen and Specker, 1967), which is a particular consequence
of a theorem with fundamental importance for quantum mechanics,
namely the Gleason Theorem (Gleason, 1957).
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A precursor of this result was Specker’s short but ingenious paper
(Specker, 1960), in which he studied the deep logical structure of the
co-decidability of propositions concerning any quantum-mechanical
system and their embedding into Boolean lattices while preserving the
operations of negation, conjunction and disjunction, and answered by
‘an elementary geometrical argument’ in negative the hope of having
the {0, 1}-valuations for those propositions. In fact, both Specker’s
motivation and result had conspicuous metaphysical overtones, since
their main, innocent-looking target was the idea of the scholastic or
Leibnizian-like ‘Absolute Observer’, which is just a fancy name for
the consistent structure of the Boolean valuations defining the deter-
minate, global actual state of a physical universe characterized by an
ordered set of propositions. Thus, Specker’s answer is quite plain:
such a Leibnizian omniscient spectator of the state of affairs, or, equiv-
alently, such a globally determinate actual state (‘reality’), cannot
exist without contradiction. Then, one decade after Gleason’s formal
result, John S. Bell (1966) addressed the problem in the framework
of the hidden variable deterministic models, i.e. always possessing
the dispersion-free states, and he correctly observed that such models
cannot be constructed if they are expected to be entirely noncontex-
tual since the additivity of the expectation values for comeasurable
observables cannot hold. The significance of these purely formal re-
sults is today quite clear, yet their ontological meaning is not. In what
follows, I shall exclusively focus on this purely metaphysical side of
the problem, thus ignoring the semantic or epistemological aspects,
since the main point of interest here is to gauge the prospects for
a realistic ontology of physical (quantum) potentiality in mundo.

Before we proceed to the topological and physical meaning of
contextuality, let us straighten out why the whole issue is so serious
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from the purely philosophical point of view. The question is, after
all, what does the ‘impossibility of the pre-existing {0, 1}-values of
observables’ (‘impossibility of binary definite valuations’) mean?

There is a deep philosophical controversy lurking behind this
question, since the central problem at issue here is, as far as we try
to faithfully construe the formal structure of quantum theory, that
of physical definiteness (henceforth, D) and objective reality or pre-
existence (OR). In fact, from the ontological point of view, D and
OR are closely interlinked as the core ingredients organizing basic
metaphysical arguments and constructions, since the fundamental
assumption of the Western realist metaphysics after Parmenides, Plato
and Aristotle, also inherited by post-ancient physics, and mechanics
in particular, is:

[DOR]
Being real (Greek ὄν) = being definite (τοδί τι) = being a part
of a determinate, consistent whole (τὸ ὅλον) or a logical com-
plemented system (λόγος).

The precondition is that an objective being1 exists and is com-
prehensible only in a determinate whole, in which maximal mutual
distinguishability and definite exclusion (complementation) relations
between all its constituent elements are always guaranteed. DOR is
the guiding classical ontological intuition concerning, for example,
states or elements of some definite world, actual or possible, which is
why anything which would deviate from it has been taken to be both
nonexisitent and incomprehensible, irrational in the strong sense of
the term (alogical, in Greek ἀλόγος).

For example, in his Republic Plato is explicit that ‘what fully
exists is also entirely intelligible, and what does not exist is also

1 Not an image or subjective representation of a being, which may be deficient, uncer-
tain, inaccurate or fuzzy.
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unintelligible’ (Rep. 477a3-4).2 And in the dialogue Sophist it is
emphatically stated that intelligibility is possible only in the whole
system of propositions, i.e. logos, which forms a complete system of
definite elements3 and their exclusion relations, beyond which nothing
can be comprehended at all: ‘to separate each thing from everything
else is a total destruction of the logos, for what makes logos possible
is interdependence between all elements’ (Soph. 259e4-6). According
to this way of thinking, every element in itself has no definite nature in
separation, and only when taken as a part of such a complete system
of logical relations (logoi) can it be regarded as some real being:
‘whenever each element becomes a single element, it has a limit in
relation to any other element and to the whole, and that whole also
has it in relation to all its parts’ (Parm. 158c7-d2). That is why the
metaphysical status of Aristotle’s prime matter (πρώτη ὕλη) as an
ultimate potentia or an utterly formless ‘bare stuff’ is so questionable
and vague, since something which is totally indefinite, i.e. falls outside
the system of logical categories of predication, cannot exist per se
as reality, and cannot be invoked as some efficient potentiality taken
as a self-standing substrate of what actually exists (see e.g. Charlton,
1992). In fact, the ‘prime matter’, in line with DOR, is rather non-
being.

Most modern philosophical discussions concerning indeterminacy
or fuzziness (taken to be equivalent) have been focused on logical,
semantic-representational and purely epistemological aspects related
to vague predicates and epistemic or pragmatic uncertainty, while
the metaphysics of ontic indefiniteness in mundo, especially in the

2 Here and thereafter all translations from the sources are mine. For the sake of clarity,
I take Plato’s εἴδη from Sophist 259e and μόρια from Parmenides 158c-d as meaning
‘elements’ (of some complete system).
3 In the pre-classical Greek, the meaning of logos is just a gathering or putting together
of some discrete elements.
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foundations of physics, has been given, due to the appeal of DOR
and troublesome maladies such as the Sorites Paradox4, only little
attention. In fact, it is common after Russell to assume that indefi-
niteness itself and the failure of the principle of the excluded middle
both signal merely epistemic vagueness or subjective ‘indecision’,
and cannot be accepted as an essential ingredient of consistent, fully
realistic (i.e., proclaiming OR) metaphysics and physics. In this sense,
D makes up a necessary, though not sufficient, condition of classical
realism as encapsulated in David Lewis’s stringent dictum: ‘The only
intelligible account of vagueness locates it in our thought and lan-
guage. [. . . ] Vagueness is semantic indecision’ (Lewis, 1986, p.212).
Contemporary metaphysical approaches which posit some ontic inde-
terminacy together with OR mostly do not introduce it at the basic
level of the constituent identity-laden worldly entities, thus they are
compatible with standard mereology (cf. e.g. Morreau, 2002). Even
more elaborate theories working in the modal framework (e.g. Akiba,
2004; Barnes and Williams, 2011) admit primitive ontic indetermi-
nacy, but they often uphold bivalent classical logic and semantics as
their firm backbone. In such cases, DOR operates undisturbed at the
higher level of possible worlds being complete (maximal) and fully
determinate systems, and it is just objectively indefinite which of them
is actualized in time.

Thus, in essence, the Western ontological and physical paradigm
based on DOR assumes that being something means being a certain
determinate entity (e.g. ‘this thing’ or ‘this fact’), which is logically

4 See e.g. (Dummett, 1975) for a classic argument of this kind against fuzzy predicates
and indeterminacy as unacceptable and unintelligible, that is, pathological for any
coherent system. Assuming a semantic analogue of DOR and the classical logic,
Dummett famously claimed, in a somewhat Platonic vein, that phenomenal properties
as commonly conceived cannot be real. The same could apply to all versions of the
Sorites Paradox.



152 Marek Woszczek

defined in terms of multiple relations, in particular the exclusion
negation (complementation)5, in a total propositional system which
does not license any first-order vague predicates corresponding to
real indefinite properties, including dispositions. Perhaps the most
mature and radical fruit of this tradition in early modern philosophy
is Leibniz’s masterly binary ‘universal algebra of concepts’ from
his Generales inquisitiones. . . (1686)6 and the related full-fledged
essentialist ontology of possible worlds as global logical systems
composed of completely definite, indivisible individuals characterized
by intrinsic states (see e.g. Bella, 2005). Here, reality itself is thor-
oughly definite, and there is an ideal ‘Absolute Observer’ associated
with such a complete system. Leibniz offers a clear picture of every
definite universe-system as governed “by laws of the general order
(Loi de l’ordre general) of this possible universe to which they are
appropriate and whose concept they determine, as they do also the
concepts of all the individual substances which compose that par-
ticular universe” (Leibniz in a letter to A. Arnauld, 14 July 1686;
Leibniz, 2009, p.73). The Leibnizian panoptical ‘Absolute Observer’
of the world-system is exactly the omniscient God from Specker’s
1960 paper, who might check in advance by logical calculation the
{0, 1}-value of any proposition about the future contingent value of
any possible physical observable. Note that here the ontological re-

5 The ontological nature of negation is at the very centre of the dialogue, cf. Soph.
258a-c. It was Proclus in the 5th century AD who in his commentary on Plato took it
to extremes, saying that ‘negations are causes (αἴτιαι) of affirmations’ (In Parm., VI,
1075, 18-19; cf. Proclus, 1992, p.428).
6 This ‘universal calculus’ of definite concepts is just Boolean algebra before Boole
(Lenzen, 1984; Malink and Vasudevan, 2016), equipped with identity, containment,
conjunction and negation.
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lation between the possible and the actual is always mirror-like: the
systemic rules of construction and the global {0, 1}-determinacy of
worlds are the same all along.

DOR seems to be extremely important for physics, and science
in general, since it is a necessary foundation of the Principle of Suf-
ficient Reason (PSR), which states that for every state or fact F of
a world, there is a definite reason why F is the case, or, in Spinoza’s
famous phrasing, ‘si nulla detur determinata causa, impossibile est, ut
effectus sequatur’.7 In other words, whatever contingent physical fact
(actual value of some observable) is taken into account, there must be
a definite ground for its coming to be, e.g. some other definite state
and its evolution. PSR can be transferred to the indeterministic setting
in ontology and we can accept a generalized probabilistic explanation
for any F, e.g. by use of the category of disposition or propensity, but
in order to have a consistent picture of reality one needs an agreement
concerning both (i) what a definite fact F is (objectivity of actual
states), and (ii) what a definite disposition for coming to be of F is
(objectivity of determinate possibility). In order to have (ii) being
concordant with DOR, it is necessary to have a complete basis of all
determinate possible (Boolean) states of affairs, which can then carry
the pre-assigned values of the (Boolean-Kolmogorovian) probability
measure construed as representing the complete ontic dispositions
pertaining to an actual system. Let us call such possible states the
classical (or Leibnizian) possibilities. If either (i) or (ii) does not
work, or if neither works, then the whole ontological framework falls
through, along with PSR as its foundation. In such cases, strong ontic
indefiniteness seems to spoil the very idea of OR.

7 ‘If there is no determinate cause, it is impossible for any effect to follow’ (Spinoza,
Ethics, I, Ax. III; de Spinoza, 1977, p.6).
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Another consequence of assuming DOR in physics is also Ein-
stein–Podolsky–Rosen’s (1935) famous definition of the ‘elements
of reality’ in terms of what can be predicted (via physical laws or
computability) with certainty: being real means being actual and fully
definite, which always requires, at least in principle, globally con-
sistent {0, 1}-valuations for separate states of affairs occuring at any
spatiotemporal location. Einstein called it So-Sein, ‘being-thus’, and
made it the essence of his principle of separability. The point is that
DOR is so prevalent and habitual that EPR physical reasoning seems
inescapable under the threat of contradiction: if the world is composed
of determinate facts F, and is consistent as the reality, there has to
be a global {0, 1}-valuation on all possible synchronic physical ob-
servables on all actual physical systems, whatever their interactions
are. That is in essence what reality is. Niels Bohr’s quick answer to
the EPR paper (Bohr, 1935) rejected that assumption, hence it also
dropped DOR, but did so by relying on epistemological considera-
tions and the classical notion of the ‘experimental arrangement’ and
‘eventuality’ without any clear ontology, which led to the obscurity
of his quasi-Kantian phrase which referred to contextuality as ‘an
influence on the very conditions which define the possible type of
predictions regarding the future behaviour of the system’ (Bohr, 1935,
p.700).

Perhaps this is also the main reason why John S. Bell (1981,
pp.58–59) wrote that for him Bohr’s reply, which relied on the com-
plete ‘freedom of handling the measuring instruments’, is incompre-
hensible, while the EPR clear ontological standpoint concerning the
‘nature of reality’, which respects DOR, is not. Bell was perfectly
right when he stressed that what is at stake is not just the old problem
of determinism or some particular correlations per se, but rather, in
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line with Bohr, the commonsense definition of reality8 and physical
systems having some pre-assigned definite properties that are locally
detected (measured). And it was Bell himself who constructed the
first proof of the state-dependent contextuality for quantum compound
systems dissociated in space (Bell, 1964), before it was fully realized
that the resulting nonlocality is mathematically just a particular in-
stance of the more general contextuality (e.g. Horodecki et al., 2015;
Acín et al., 2015).9 It seems clear that the latter is indeed, with respect
to DOR and the impossibility of consistent {0, 1}-valuations (Bohr,
1935, p.699), a severe ontological problem, of course to the extent
that one wants to have some explicit realistic ontology at all.

2. Ontic quantum contextuality as a topological
property

Let us define formally what is so curious about physical contextuality
and why such a basic and apparently innocuous assumption as DOR is
questionable precisely on ontological grounds, including the notion of
classical possibility. In order to make fully explicit the topological dif-
ference between the classical and quantum structures of observables,
as well as between the corresponding notions of ‘state’, we adopt here
a theory-dependent formulation of contextuality, in contrast to e.g.

8 Bell (1981, pp.45–46) humorously wrote that Einstein, Podolsky and Rosen ‘were
with the man in the street in this business’.
9 The nonexistence of joint probabilites for quantum systems does not depend on
any distance in spacetime. Spatial separation between subsystems and the nonlocal
correlations only make conspicuous the generic nonclassicality of this contextuality.
One may call it general nonseparability, also in the case of non-composite systems.
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the general theory-independent framework proposed by Abramsky &
Brandenburger (2011) in terms of sheafs over the space of empirical
measurement scenarios.

Let S(B) be a topological Stone space of the Boolean algebra
B of propositions about the synchronic physical properties of some
classical system O, which means that S effectively encodes the rele-
vant physics of O (whatever it is: gravitational, electromagnetic, or
other). This is quite obvious since any pure mechanical state ψ of O
automatically selects an ultrafilter in B, and the field of all ultrafilters
in B is isomorphic to B as its dual topological Stone space S(B)

due to the Stone representation theorem. And let T S = (T , π,S)
be the constant Boolean sheaf over the state space S, that is, every
stalk TS is fixed as TS = π−1({s}) = 2 ≡ {0, 1}, s ∈ S, with the
projection π : T → S as a local homeomorphism from the étale space
T . Local sections of the sheaf T S over the proper subsets S ⊂ S
are continuous maps σ : S → 2, where π ◦ σ = idS , which gives
the values σ(S) of the sheaf. By definition, a section is global when
S = S, and then every σ is just a restriction of the latter (Mac Lane
and Moerdijk, 1992, chap.II; Knoebel, 2012).

The fundamental fact about the classical-mechanical spaces of
pure states ψ of any O is that one can always have global sections of
T S , and the full algebra ΓS(T ) of those sections is just isomorphic
to B, which is a constructive backbone of classical mechanics. In the
classical world we can always locally glue information into a single
coherent picture of the actual properties of O by consistent Boolean
valuations, that is, it is possible to consistently extend any local σ for
S = S: the global, i.e. unrestricted, sections over S(B) do always
exist (Fig. 1). One can thus say that the logic of constant {0, 1}-
valuations is ‘flat’ or well-behaved, or, that the corresponding sheaf
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Figure 1

is trivial, which makes the question of what counts as reality quite
unproblematic and the whole scaffolding of the physical reference
frames to be of purely epistemic character.

In fact, what is of crucial importance is that, due to the existence
of ultrafilters, the very notion of physical state as a catalogue of
the actual properties of O becomes straightforward; each physical
system has its own Einsteinian ‘being-thus’, and, moreover, there is
no difficulty in extending this notion to the whole universe (world-Ψ)
taken as a mechanical system of O’s. This means that any ontic
contextuality of states is absent, and there is only one global ‘context’
of coexisting properties without restrictions, which is encapsulated by
the metaphysical catchword ‘Absolute (panoptical) Observer’.

Note that since the ultrafilters on B simultaneously generate the
full Boolean algebra of all the global sections of T S , that is B ∼=
ΓS(T ), one gets the algebra of the classically possible (Leibnizian)
mechanical worlds, which is already built from the very beginning
into the unitary logical framework. The curious ‘mirroring’ feature of
the latter is that it is exactly the same logic which governs the domains
of the possible and the actual, hence there seems to be nothing special
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about possibility per se—in fact, it is difficult to comprehend why
the actual would be ontically distinguished as ‘fully existing’. That is
why thinkers like Leibniz needed a ladder of additional metaphysical
constraints as rules of the world selection, or foreknowing God’s one-
moment choice, while in the classical deterministic cosmology there is
always the problem of the extremely improbable boundary conditions
and the unpleasant cosmological fine-tuning of the initial (or final)
world- Ψ as a bare fact. It looks like the domain of possibility was
fully modelled upon the domain of actuality, and the probabilities for
the latter could be consistently pre-assigned only after some complete
universe of logically possible states of affairs, i.e. the full Boolean
algebra ΓS(T ), is fixed (that is how the probability of ‘improbable
boundary conditions’ is assessed).

Even if one prefers the indeterministic ontology and objective
(noncontextual) dispositions or propensities, like e.g. Karl Popper
(1967), it is tacitly assumed that there is no way beyond the Kol-
mogorovian measure based on Γ. The reason behind this premise is
not just PSR and the requirement of concordance between (i) and (ii),
it lies much deeper, in ontological DOR: one needs a complete basis
of definite (Boolean) elements for the probabilistic measure, and then
(i) and (ii) can be handled in a unitary manner. In the end, there is
no way out of the Boolean universe here. The logical state structure
ΓS(T ) in physics is thus a full realization of the paradigmatic onto-
logical intuition, since being means being definite and being a part of
some fully determinate, consistent whole, which brings forth, as a sort
of a byproduct, the idea of panopticality or a detached observer. One
may sum this up by saying that classical ontology favours the actual
and the definite, paying the price of making the potentiality a mirror
image or an expanded shadow of the actual.
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In the quantum regime, the rules of the game change drastically.
A lattice of propositions about the properties of a quantum system O

(which may also be multipartite) forms an orthomodular σ-orthoposet
L(H), being isomorphic with the lattice of closed subspaces of the
complex Hilbert space H associated with O, which is complete if it is
ordered by inclusion (for simplicity we limit ourselves to cases when
H can be constructed at all, but it can be generalized to all types of
W ∗-algebras of observables, see (Döring, 2005)). The sheaf-theoretic
construction for quantum observables may be achieved in general as
follows. Let a topological space LL(H) be a family of all Boolean
(commutative) subalgebras L of L(H) ordered by inclusion ⊆, and
let us have a required Boolean homomorphism (the Kochen–Specker
valuation) h : L→ 2 for any Li ∈ LL(H). We can define the partial
ordering ≤ for pairs (Li, hi), given by: (L1, h1) ≤ (L2, h2) iff L1 ⊆
L2 and h1 = h2|L1, associated with the respective topology ofLL(H).
Every Boolean subalgebra Li in LL(H) belongs to some maximal
Boolean subalgebra (a maximal quantum observable), which forms
a (quasi-) classical context M.

Now the quantum spectral sheaf (over the base space of quantum
observables or spectral algebras), the closest analogue of the classical
T S we get, is a triple ΦL = (Φ, π,LL(H)), with ΦLi

= (Li, hi :

Li ∈ LL(H)) and a projection as a surjective local homeomorphism
(étale map) π : Φ → LL(H) from the sheaf space Φ. A continuous
local section (of the projection π) over some subset M ∈ LL(H) is
a map σ : M → Φ, π ◦ σ = idM , and the images of local sections
naturally induce the topology for the whole étale space Φ. That is
so because for every Li ⊂ M we obviously get {0, 1}-values of
the sheaf, σ(Li) = (Li, hi), with the proper restriction condition:
σ(L1) = (L2, h|L1) for every L1 ⊆ L2, which always guarantees the
local compatibility of sections as a crucial fact about the quantum ob-
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servable values. Due to Gleason’s no-disturbance principle for LL(H),
the probability for obtaining some value cannot depend on a valuation
of some other compatible observable, which gives the properly behav-
ing, i.e. additivity satisfying, probabilities for M’s (Gleason, 1957).10

Hence the latter define subclassical ‘patches’ within the full quantum
L(H), and the essence of the generic quantum ‘complementarity’
is that it is not possible to have the full {0, 1}-valuations (i.e. the
Kochen–Specker states) over two different M’s at the same time.11

The (Bell–)Kochen–Specker Theorem in the sheaf-theoretic for-
mulation simply says that if a Hilbert space H, representing the
physics of a system O, is of dim > 2, then the spectral sheaf ΦL

on LL(H) has no global sections. Thus, we have a strong topological
obstruction, which makes the unrestricted extending of local σ impos-
sible if the global consistency of valuations σ(L), as in the case of
σ(S) for TS , has to be preserved (ultimately, that is what the objec-
tivity of states (i) and the EPR intuition about the definite ‘elements
of reality’ do unconditionally demand). A global Boolean ‘context’
for mechanics does not exist, and only single local contexts M, as
defined by quantum spectral algebras, can be regarded as being defi-
nite, hence the whole idea of synchronic {0, 1}-properties, objectively
preexisiting and pertaining to O as ‘states’, gets into fatal trouble.

In consequence, what is actual, i.e. a definite fact F from (i), is
only a random local section σ(L) of π in a particular definite M, and
that physically relativizes the valuation h itself, which is a contingent

10 In the operational framework, one might call this central property the ‘noncon-
textuality of projective measurements’. However, it should be remembered that it is
a purely algebraic feature of the whole quantum structure, and not just the statistical
characteristics of particular sets of measurement outcomes.
11 See e.g. (Heunen, Landsman and Spitters, 2012) for a purely operator-algebraic
account of quantum complementarity, and (Heunen, Landsman and Spitters, 2012) for
a general categorical approach in terms of dagger monoidal kernel categories.



Quantum contextuality as a topological property, and the ontology. . . 161

relation of O to some exosystem O′ that induces the particular M.12

Quantum mechanics simply lacks the constructive backbone of its
classical predecessor. Before I discuss what this means for any on-
tological account of potentiality, it is important to indicate why this
topological obstruction has nothing to do with the classical epistemic
contextuality and should be physically dealt with as a fully ontic prop-
erty. These arguments are thus based on strictly physical, including
experimental, considerations, being at least relatively independent
from contestable metaphysical presuppositions, and they range from
quantum-informational to thermodynamical aspects. In essence, ΦL

induces the totally nonclassical structure of physical probability and
entropy, and that only in turn effectively restrains ontologies with
definite states or dispositions modelled after ΓS(T ) (I shall go back
to the latter point in the next section).

Firstly, the topological obstruction on ΦL gives rise to the en-
tirely novel physics of information processing in Nature, the objective
(non-epistemic) quantum regime, which has nothing to do with hu-
man labs and disturbance-producing experiments. At the level of the
latter, due to the contextuality or algebraic ‘locality’ of σ(L), it is
impossible to perfectly distinguish some unknown pure nonorthog-
onal quantum states, and thus to determine in one shot an unknown
state on a single copy, however weak the conceivable measurement
is (D’Ariano and Yuen, 1996). One can do that only randomly with
the Holevo–Helstrom probability pHH ≤ 1

2 (1 + sin θ) of successful
guessing, for the equal probability of the preparation of each state

12 Due to the standard minimal interpretation of the situation, quantum mechanics
cannot be – and is not – metaphysically realist in the classical meaning of the term,
which is quite obvious. But the stronger claim that it cannot be realist at all (in any
acceptable sense) is premature and overly dependent on the classical metaphysical
framework of actuality and its ‘mirroring’ possibility, that is B ∼= ΓS(T ). In fact, it
rests on the acceptance of D as a putative necessary condition of realism per se.
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and θ being an angle between two vectors in H. However, any purely
epistemological explanation of this bound on discriminability13 is
misleading. First note that the related basic quantity cos2 θ is a prob-
ability that the two corresponding states may be confused, that is,
if one of them is ‘measured’, or, better still, filtered in the basis (or
context) of the other, it passes the test, and vice versa. Now, it can be
quantitatively estimated for such a quantum nonzero confusability of
states how much any (quasi-)classical simulation which is maximally
epistemic (i.e. assumes the quantum measure to be just a measure of
classical ignorance about a distribution of the underlying actual ontic
(hidden) {0, 1}-states) must fail for dim H > 2, while the failure
grows dramatically with dim →∞ (Leifer, 2014; Barrett et al., 2014;
Branciard, 2014), which has already been tested with success (e.g.
Ringbauer et al., 2015; Liao et al., 2016).14 This means that BKS
is sufficient to rule out any maximally epistemic models (including
noncontextual preparation models) which try to treat the quantum
measure like the quasi-classical measure, which it is not. Apparently,
there is no hidden reality with facts satisfying DOR – no ‘elements
of reality’ to be mechanically disturbed by our clunky experiments in
spacetime, and this seems to be a source of quantum computational
gain.

13 If multiple copies of transmitted states are physically available, the empirical prob-
ability of successful guessing significantly increases with the number of copies and
the specific measurement strategies involved. Note that the probability pHH is also an
entropic measure, the so-called min-entropy (Konig, Renner and Schaffner, 2009).
14 Recently, Schmid and Spekkens (2018) have shown that any noncontextual ontologi-
cal model must satisfy some nontrivial trade-off relation between the Holevo–Helstrom
bound and confusability, which is violated by quantum systems as a clear indicator
of ontic contextuality. More precisely, for a given confusability the optimal quantum
trade-off allows more success rates than the classical noncontextual one. This no-go
result is particularly important since it is theory-independent and can provide a clean
operational account of (non)classicality.
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But there is, secondly, much more to contextuality and indis-
tinguishability (which in turn have some surprising relation to the
causal stability of spacetime). The latter makes it impossible to build
perfect quantum cloning or deleting machines due to the quantum
no-cloning, no-broadcasting and no-deleting principles. If it were pos-
sible to perfectly discriminate unknown nonorthogonal states beyond
the Holevo–Helstrom bound, one could freely produce their copies
and thus easily violate the no-cloning prohibition (in fact, state dis-
crimination may be regarded as a form of cloning). Although there
indeed exist noncontextual ontological models which are able to re-
cover some substantial aspects of the no-cloning phenomenology,
what is a purely quantum advantage induced by ontic contextuality
is a strictly higher maximum fidelity of cloning as related to the
confusability of states (Lostaglio and Senno, 2020). It is again contex-
tuality as a topological property which precludes any fully classical
simulation of no-cloning and, presumably, no-deleting.

Now, the physical fact is also that if it was possible e.g. to delete
an unknown quantum state available in two copies or exactly clone an
unknown state, one could send faster-than-light signals in the Universe
and infringe its causal order (Gisin, 1998; Pati and Braunstein, 2003).
One can still perform a quantum approximate or just probabilistic
cloning, but even in such cases opening a nonlocal signaling channel
is ruled out (Pati, 2000; Bruss et al., 2000). It is well known that
there is a much larger space of strong nonsignaling (more nonlocal)
correlations, which also do not allow free cloning, but are not achiev-
able on quantum systems (Masanes, Acin and Gisin, 2006), however
general contextuality itself provides a specific insight even here. Ev-
ery Kochen–Specker proof can be used to derive the Bell (bipartite)
inequalities maximally violated by quantum theory and with their val-
ues being at the same time exactly on the boundary of infringing the
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Lorentz invariance, but never actually doing so (Aolita et al., 2012).
These special maximal contextuality-based correlations are particu-
larly interesting, since the corresponding probability distributions for
actual events have a null set of local models able to simulate them,
but nevertheless, in this extremal case, they precisely accord with the
relativistic causality. Most philosophical discussions concerning the
nonclassical probability distributions have usually been focused on
the vexing problem of nonlocality between actual, definite systems
in spacetime, but the correlations of this sort reveal that the source
of quantum advantage in general resides rather in the full absence of
actual (spatiotemporal) {0, 1}-properties, that is, in objective indefi-
niteness from the Kochen–Specker-type sets. One may surmise that
such a sector of tangent concordance between contextuality as a topo-
logical constraint (without any reference to the speed of light or the
physics of interaction) and the nonsignaling bound (causal structure
of classical spacetime)15 cannot be a mere coincidence and is more
readily an ontic feature of the Universe, without any dependence on
the messy operations in labs.

Finally, there is one ultimate judge in physics, and this is ther-
modynamics. Quantum histories (let’s call them q-histories) are ther-
modynamically different from classical histories, since their entropic
characteristics deviate extremely from those of classical histories
solely due to ontic contextuality. In particular, q-histories of single
indivisible systems violate the simplest 5-cyclic entropic noncontex-
tuality inequality in time (Chaves and Fritz, 2012), as well as the
5-cyclic Kurzyński–Ramanathan–Kaszlikowski inequality for condi-

15 Of course, constraints induced solely by the Kochen–Specker contextuality cannot
reproduce the full statistical constraints on quantum nonlocality, since the former are
more general – they just do not include the complex product structure typical for
entanglement in multipartite systems.
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tional entropies (Kurzyński, Ramanathan and Kaszlikowski, 2012),
which would be impossible if the underlying structure of events were
ΓS(T ). This is of fundamental significance as far as it needs neither
the introduction of the aforementioned correlation functions of single
outcomes nor averaging over some hypothetical hidden variables, as in
the Bell model. Moreover, one can construct a purely thermodynamic
formulation of the (Bell–)Kochen–Specker Theorem and show that
the quantum entropic contextuality is a very strong obstruction to any
putative ‘thermodynamic realism’ based on the presumed Kolmogoro-
vian measure and hidden dispersionless states (Jia et al., 2018). If the
resulting quantum entropic monogamy relations16 were violated for
sequential operations in time, it would also be possible to signal into
the past and infringe the causal structure of spacetime, which quantum
protocols cannot do. Thus, ontic contextuality induces a more general,
consistent thermodynamics, and ontology rather has to come to terms
with this nontrivial fact without trying to seek rescue in epistemology.

3. Quantum potentiality is real indefiniteness, not
counterfactual possibility

A natural starting point for quantum ontology is the conclusion that
the problem is not quantum mechanics itself, in particular BKS, but
rather the metaphysical assumption concerning what counts as being

16 Monogamy relations are an important feature of quantum correlations as quantitative
constraints on their sets, which limit the shareability of information between distinct
parties (see e.g. Dhar et al., 2017). They are closely related to the no-signaling principle
and its generalized form, Gleason’s no-disturbance principle (for sets of compatible
measurements). In the thermodynamic framework studied e.g. in (Jia et al., 2018),
the straightforward monogamy relations are constructed for entropic Shannon-type
inequalities defined on sets of measurements.
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and what is non-being, that is, in short, DOR. This is quite interesting
since only rarely does physics impose such pressure upon a basic meta-
physical intuition which often seems to be a pure a priori of physics.
Of course, this does not happen without some serious opposition,
since there might be doubts about whether the pressure is legitimate
or whether physics should be allowed to demand drastic moves at the
primitive level of ontology. I fully agree that no physical restrictions
can just pick out a particular metaphysics as the right one (cf. e.g.
Hawley, 2006; French, 2014), and neither can they solve metaphysical
dilemmas like determinism vs. indeterminism, since the constructive
inventiveness of general metaphysics is illimitable, but, nevertheless,
the naturalistic ontology of physics is not so unconstrained in its
dealing with contextuality.

The indicated opposition to the overtly ontological interpretation
of contextuality makes quite clear an uneasy tension between physics
and theoretical metaphysics, which is discernible in discussions on
both sides. In this specific case, it is not so much a methodolog-
ical problem, but rather a relatively rare clash between genuinely
fundamental metaphysical assumptions, spawning a whole class of
shared realistic intuitions (concerning e.g. ‘state’/‘fact’, ‘disposition’
or ‘possibility’), and the equally fundamental structure of the highly
confirmed, although falsifiable, physical theory, and that indeed makes
any choice a delicate issue. On the one hand, it seems rather unsurpris-
ing that one tries to avoid abandoning basic intuitions that are a sort
of common ground in metaphysics. For example, it is instructive to
observe how D and counterfactuality still play a guiding constructive
role even in novel philosophical conceptualizations of ontic indeter-
minacy (e.g. Akiba, 2004), which illustrates the previously mentioned
‘mirroring feature’ of such models. On the other hand, there has been
considerable progress in the physics of contextuality, both experimen-
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tal, e.g. concerning entropic tests in state-independent scenarios (Qu
et al., 2020), and theoretical, related to the theory-independent, purely
operational accounts of contextuality (which are beyond the scope
of this paper). Both make the pressure on the ontology of physics
constantly grow, analogously to the historical case of the theory-
independent Bell inequalities. Hence, the clash seems to be more and
more conspicuous and hard to ignore.

One of the common answers to contextuality is adopting the view
that if ψ is not a catalogue of definite actual properties, one could
just accept indeterminism with physical possibilities as an ingredient
of ontology, which might solve the riddle. However, the basic lesson
from BKS is that merely to keep DOR unscathed is simply not enough,
since possibilistic indeterminism is neither sufficient nor necessary
to account for contextuality. For example, the most natural choice
for a classical dispositionalist is to assume that an actual system O

always possesses a set of definite intrinsic potential properties, which
is a consistent catalogue of its possibilities represented by ψ and
the full set of probabilities calculated from the complex amplitudes.
According to such a view, the actual outcome of interaction with
O would be just the indeterministic manifestation of one such pre-
existing possibility pertaining to the system.

But BKS itself, as a strong topological obstruction on ΦLi
, makes

such a model untenable, that is, taking ψ to be a set of objective,
pre-assigned possibilities that reside in O results in physical contra-
diction. The first simple proofs of this theorem have been offered by
Adán Cabello (1999a) who used the GHZ-like construction (without
inequalities and probabilities) for three pairs of systems, as well as
the Hardy-like proof for two pairs of systems. In fact, every quantum
Bell-like scenario with entangled systems is just a particular realiza-
tion of the contextuality scenario for compound systems, hence it
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is a statistical illustration of the breakdown of the notion of local
intrinsic possibilities pre-assigned to subsystems. One may easily
demonstrate that it is in each case related to the noncontextual assign-
ments of properties, even if they are only probabilistic correlations and
nothing more (Cabello, 1999b). The maximally nonlocal correlations
discussed in the previous section are just an explicit example of this.

Furthermore, one may use the general information-
thermodynamic Bell–Kochen–Specker obstruction and the
resulting quantum monogamy relations from simple Shannon-like
inequalities (Jia et al., 2018) as a direct proof of the impossibility
of constructing a model with the physical sources of stochastic
behavior intrinsic to systems, whether they are simple or composite.
Quantum entropies themselves, not just some particular sets of
purely statistical correlations in space and time, rule out pre-assigned
internal dispositions that might stochastically manifest in direct
response to some external stimuli. This is, as I indicated, because the
Kolmogorovian probabilistic measure completely breaks down for
L(H), the quantum probabilities are not convex combinations of
{0, 1}-states, and this has nothing to do with some local mechanical
disturbance of state or the epistemic conditions of access to the
properties of some O. The trouble lies in the classical understanding
of a (pre-assigned, Boolean) property, whether categorical or
dispositional, that is, in Einstein’s ‘being-thus’, which is why
his principle of separability cannot work. For example, statistical
Liouville mechanics with a strong epistemic restriction (i.e. respecting
some specific constraints on observables), equivalent to Gaussian
quantum mechanics (Bartlett, Rudolph and Spekkens, 2012), is
unable to recover quantum contextuality, either state-dependent or
state-independent, including the full range of nonlocal correlations
for Bell-like scenarios.
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Now it is possible to identify the deep metaphysical source of per-
manent confusion about quantum contextuality as the tacit adoption
of DOR and its philosophical consequences, such as e.g. the working
metaphysics of the Boolean ‘elements of reality’ (states) collectively
fused into some postulated actual world-Ψ, the credence in the def-
inite counterfactual observables (Leibnizian possibilities), as well
as the Principle of Sufficient Reason, which encourages mechanical
reasoning about producing the outcomes. On the mathematical level,
their failure is effected by the total breakdown of the structure T S and
the corresponding commutative probability theory, but a decision to
reject DOR has far-reaching consequences, not just for standard philo-
sophical counterfactual analyses, which are of no use here, but for
understanding the underlying physics. The problem begins with the
very vocabulary of quantum mechanics inherited from the classical
theory.

The term ‘contextuality’, as used in the Bell-like sense, has been
employed in the framework of the hidden variable models, that is T S ,
and it may still give the impression that it is the mechanical ‘context
of measurement’, or the internal state of the apparatus, which some-
how ‘influences’17 the outcome by covertly selecting some subset
from among the inferred, physically pre-existing possibilities, even
nonlocally in spacetime (for a methodic critique see e.g. de Ronde,
2017). However, the breakdown of T S , i.e. the absence of ultrafilters
on the presumed world-Ψ, is most naturally equivalent to the global
collapse of the valuation definiteness in the fully ontological sense,
which means that quantum potentiality is not any sort of Leibnizian

17 It has been the Bohrian or, more generally, Copenhagen tradition which introduced
such the problematic terminology of ‘influence’, though, to be fair, one must admit
that it was construed by Bohr purely epistemically as an ‘influence on the conditions
of possible experience’. The very idea of ‘context’ also has a strongly epistemic flavor.
Such a quasi-Kantian formulation is unworkable from the point of view of ontology.
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possibility and has nothing to do with the classical counterfactuality
of measurements. Thus, the ontological source of contextuality from
the BKS formulation on LL(H) is rather the purely physical, real
indefiniteness (the indeterminacy of being) and the associated purely
ontic randomness in the quantum regime. Abbott et al. (2012) have
proved the stronger version of BKS (without assuming the global
Kochen–Specker valuation), in which it is possible to precisely iden-
tify the objectively (provably) indefinite values of observables, and
hence to produce strongly certified quantum random sequences which
are Turing incomputable. In fact, it can be shown that such value in-
determinacy is ubiquitous if only one particular observable is locally
fixed to be value definite (Abbott, Calude and Svozil, 2014).

In this sense, physical indeterminacy as a quantum resource seems
to be almost everywhere in Nature, while definiteness is a local phe-
nomenon, which makes indefinite potentiality physically fundamental,
and the definite actuality secondary. It is the former that is the main
engine of quantum mechanics, and makes possible quantum informa-
tion processing and nonlocal effects without the slightest infringement
of the Lorentz invariance, since what is indefinite and does not ex-
ist in spacetime cannot be ‘transmitted’ or ‘sent’ in it (as a definite
spatio-temporal being can be).

Some misconceptions in construing quantum theory may indeed
result from imposing DOR as a tacit ontological premise and ex-
plicating quantum potentiality through the category of actuality, i.e.
taking the latter to be ontologically primary and pervasive. But what
we have in the quantum regime is an exact reversal of the classical
mirror-like relation of actuality and possibility, the latter being con-
structed according to the former within the unified logical universe
B ∼= ΓS(T ). As a topological obstruction, BKS contravenes this
relation, making the potentiality ontic, primitive and dissimilar to
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the actuality that cannot simulate or encompass the former within
such a Boolean logical universe. It is precisely this dissimilarity and
incomputability which indicates that the post-classical terminology
of both the counterfactual ‘possibility’ and ‘measurements’ of ac-
tual states is misleading, for it still assumes the metaphysics of the
‘Absolute (panoptical) Observer’.18 In particular, the breakdown of
DOR and the Principle of Sufficient Reason would mean that there is
no operative rule, law or reason determining the transition from the
(generic quantum) potential to the (spatio-temporal) actual, which is
‘irrational’ or ‘alogical’ in the fully ontological sense (cf. e.g. Bub,
2014).19 In this case, the Spinozian axiom would be false: possibile
est, ut effectus sequatur, si nulla detur determinata causa, that is, the
operative cause of some definite state of affairs may be an indefinite
(non-Boolean) potency.

The breakdown of determinacy does not imply that ontological
realism per se is impossible or that objective reality itself vanishes
into thin air. In point of fact, the aforementioned reversal itself makes
quantum potentiality and randomness an effectively autonomous agent
and a physically real reservoir. For example, entropic contextuality
may be utilized in quantum network communication, and indefinite-
ness in general is critical as a resource for speed-up in universal
quantum computation (Howard et al., 2014). Quantum randomness
is autonomous or absolute in the sense that it cannot be physically

18 However, the difference between pure quantum potentiality and classical possibility
is not verbal or purely metaphysical, since the issue is not speculation about possible
observers but the physical structure of quantum processes as encoded topologically in
ΦL.
19 As far as I know, it was Wolfgang Pauli who first adopted the epistemological term
Irrationalität from the early Bohr, emphatically insisted on the metaphysical meaning
of that ‘irrational actuality’ against the currents of the history of Western ontology, and
called quantum mechanics the ‘theory of becoming’ (see e.g. Pauli, 1994).
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controlled or influenced by any local agent, it may only be exploited
or used as a means for doing physical work, hence it paradoxically
resembles the laws of classical mechanics and, from the point of view
of any such agent, is maximally independent. In the quantum realm,
there is nothing more real than that.

What is more, the only fully noncontextual, objective element
of the quantum algorithm, which is explicitly Lorentz-invariant, is
the Born rule that fixes the complete probability distribution for each
quantum state (algebraically, M). That noncontextuality is, as the
no-disturbance principle, at the centre of Gleason’s Theorem and
plays a decisive role for defining the objective concept of generic
‘quantum state’ as a unique measure on L(H), which is a situation
peculiar to quantum theory.20 Barnum et al. (2000) have perhaps
rightly stressed, from the mathematical point of view, that ‘it is hard
to imagine a cleaner derivation of the probability rule than this’.
Philosophically, it is a hallmark of the quantum reversal, for what is
physically real and invariant seems to be a generic potentiality, even
if the universal value definiteness is excluded by L(H), which cannot
support any Boolean measure. If some domains of reality do defy
determinacy, one may conclude that the intuition that backs DOR is
plainly false.

To make it more express and concrete, let us take an example of
a test of the state-independent contextuality on a single simple system
in time as realized e.g. on single qutrits by Xiao et al. (2018). In
such a scenario it is possible to guarantee the statistical no-signaling
condition between the consecutive measurements by assuming that
any disturbance of the future is indistinguishable within an experi-

20 In classical Liouville mechanics, one can impose the probabilistic measure on
a phase space freely as reflecting the contingent ignorance of an agent modelling
a system.
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mental error from the influence of the future on the past. In perfect
agreement with BKS, such a system strongly violates the correlational
noncontextuality inequality, which is an empirical manifestation of
the topological nonclassicality of the quantum sheaf. The first and
fundamental lesson is that there are no actual {0, 1}-properties of it
just waiting there to be disclosed by sequential measurements.

But there is much more if one acknowledges the reality of dis-
positions. The first, conservative, strategy is to try to model them
by somehow enforcing D as binary valuations on the level of sheer
counterfactual possibilities pertaining to that system in each moment.
But, as we have seen, it is also structurally excluded on the same
grounds as actual {0, 1}-properties. To say that a single system carries
its intrinsic dispositions in time as its own possibilistic ‘state’ makes
no sense, since the respective evolving probability distributions are
unable to violate the noncontextuality inequalities. The ontological
notions of both intrinsic ‘state’/‘properties’ and intrinsic ‘disposition’
seem misguided unless one accepts a pervading ‘Ptolemaic’ hidden
fine-tuning in spacetime.21 Thus, taking the BKS and experimental
results seriously, I cannot see any significant gain in invoking world-Ψ
and counterfactual (Leibnizian) possibilities as useful metaphysical
tools.

Better suited for directly ontological interpretation of the new
physical sheaf-structure ΦL is the second, more radical, strategy. It
takes quantum potentiality to be objective (context-invariant and quan-
tifiable) pure indefiniteness, thus, in line with Abbott et al. (2014),
there are no determinate properties of any system nor measures on
them before actualization, which might serve as building blocks for
spatiotemporal reality and causal interactions, and neither are there

21 For the contextuality-testing scenarios with single systems in time see (Cavalcanti,
2018).
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laws or rules governing such actualizations. Instead of trying to abide
by D, it accepts quantum reversal, that is, rejects the primacy of actu-
ality and binary valuations as a foundation of ontology, hence actual
systems in spacetime cannot be its basic entities at all. Here, in stark
contrast to classical mechanics, quantum theory is only about poten-
tiality without mechanical states, not about any individual properties
or events in spacetime and their putative counterfactual variants as
logical shadows.

Although it is beyond the scope of the present paper, one may
repeat, for the sake of clarity, that since formally nonlocality is a spe-
cial case of general contextuality, it is precisely the objective non-
spatiotemporal indefiniteness which should be seen as a physical
source of nonlocal phenomena, not some influence in spacetime
or non-Lorentzian (superluminal) action. In this sense, ‘nonlocal-
ity’ might be treated as a sort of misnomer, which results from taking
for granted the priority of the spatiotemporal actuality composed of
determinate ‘states of affairs’ in supposed interactions.

4. The quantumworld without real potentiality?

It is interesting to observe the systemic cost of some strategies to
remove ontic contextuality and fully recover DOR (or Specker’s ‘Ab-
solute Observer’) as a tacit metaphysical principle. Even if subtheories
such as Gaussian quantum mechanics are unable to do that effectively,
there are other approaches whose intent is to reduce both the strong
ontological import of BKS and ontic randomness. For example, in the
many world interpretation, with one evolving multiworld-Ψ, contex-
tuality loses any significance for there are no unique states of affairs
as actualized properties and possibility merges again with actuality,
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as in classical ΓS(T ) but with one crucial difference, namely that
these worlds must now be fully included on par, as real elements of
physics.22 One may call this an ‘explosivist strategy’ which annuls
the uniqueness of outcomes as a premise of BKS.

In Bohmian mechanics, which is, as a matter of fact, not just
interpretation but rather a new theory, contextuality results from the
mechanical ‘context of an experiment’, i.e. an uncontrolled interaction
between O and the hidden degrees of freedom of an exosystem (appa-
ratus), hence it looks as if it were utterly trivial: ‘the outcome of an
experiment depends on the experiment’ (Dürr, Goldstein and Zanghì,
2013, pp.148–153). But since the actual measurement outcomes are
strongly relational, it is impossible to say that they are detections of
the pre-existing properties of O. In fact, Bohmian measurements in
our postulated state of cosmological quantum equilibrium are simply
‘false’, they do not ‘measure’ anything (Valentini, 2010, pp.486–488),
and properties, if contextual, are in the Bohmian theory simply nonex-
istent (Dürr, Goldstein and Zanghì, 2013, p.153). In other words,
the universal timeless world-Ψ is taken very seriously, it is the only
real wave function (Dürr, Goldstein and Zanghì, 2013, pp.264–272),
but, contrary to the many world interpretation, eigenvalues are de-
prived of any ontological significance, they do not correspond to any
real subquantum properties at all. One may call this a double-edged
‘superdeterministic-eliminativist strategy’ against BKS, which thwarts
ontic contextuality but elevates a strongly epistemic variant of it, mak-
ing it a kind of illusion, due to an assumed ‘subquantum heat death’
(Valentini, 2010).

22 One of the structural consequences of nullifying the contextuality and invoking coun-
terfactuality are also, not unexpectedly, problems with the many-worlds understanding
of the meaning of nonlocal correlations.
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A vindication of DOR and erasing the indefiniteness in a single-
world ontology thus have some unpleasant consequences, which are
paradigmatically manifest in the Bohmian case. One may evaluate
it as the prevailing structural dualism of the latter. In particular, one
gets: (i) the theoretical postulate of the global world definiteness,
i.e. global {0, 1}-valuation on observables, but an excessively huge
amount of information forever hidden, together with the necessary
causal fine-tuning for observed correlations (Wood and Spekkens,
2015) which operates on the cosmological scale; (ii) an ad hoc or
‘brutal’ segregation of observables into contextual (‘false’) and non-
contextual ones (the hidden real positions of Bohmian ‘particles’),
where the phenomenality of the former also requires cosmological
fine-tuning (Cavalcanti, 2018); (iii) a forced divorce between the il-
lusory or epistemic local ‘contextuality’ and the essential, genuinely
ontological form of it—nonlocal action-at-a-distance (Dürr, Goldstein
and Zanghì, 2013, pp.154–156); (iv) the hidden ultimate, definite
actuality of Ψ (‘nothing is really potential’), timelessness and the
deterministic supercausal order of the postulated subquantum regime,
but pseudo-classical possibility, pseudo-randomness and the illusory
temporal evolution on the accessible phenomenal level (Dürr, Gold-
stein and Zanghì, 2013, pp.268–271); and (v) absolute space with
absolute rest concealed by phenomenal relativistic spacetime.

In fact, the Bohmian theory insists that almost everything taken
to be real (ontically noncontextual) is perfectly hidden, and what is
empirically noncontextual, Gleason’s no-disturbance and the Born
rule (hence no-cloning, no-deleting etc.), is held to be really violated,
albeit not empirically (e.g. Valentini, 2010). If one only knew the
timeless world-Ψ and the total configuration of Bohmian ‘particles’,
one would be an Absolute Observer, but the theory already makes
this forbidden for all local agents trapped in the supposed contingent
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equilibrium. It looks extremely Ptolemaic as a construction, from the
point of view of Gleason’s Theorem and BKS, and if the status of
quantum potentiality is like reversal of classical ontology, then the
Bohmian theory is like a forced re-reversal in order to recover D,
which produces (i)–(v).

The fundamental metaphysical convictions such as
(in)determinism or the meaning of ‘being real’ cannot be fal-
sified23, but some particular interpretations of contextuality have
nontrivial physical consequences and are also logically connected to
other physical assumptions as well as empirical constraints. These
metaphysical and physical assumptions work together, clustered in
some consistent metaphysical packages (e.g. Borges et al., 2014),
hence the real problem is: how high is the price for the metaphysical
package we may prefer? It appears that if one is inclined to have
DOR intact and ontic indefiniteness eliminated, one must pay a very
high price indeed.

Interestingly, that rather specific predicament sheds additional
light on the difficult relation between physics and metaphysics. There
seem to be substantial historical analogies between the introduction
of the quantum sheaf structure ΦL into microphysics and the equally
revolutionary instillment of non-Euclidean geometry in the physics
of spacetime. In the latter case, there have been many attempts to
recast the theory of relativity in such a way that the Newtonian on-
tology of absolute space and time might be recouped, using e.g. the
Lorentz–Kelvin ether theory and the ether interpretations of Einstein’s
equations. It turned out that such metaphysical motivation brings forth
not just the recasting of relativity as some interpretation but also dif-
ferent physical theories, which are unable to compete with general

23 Among the founders of quantum theory it was e.g. Schrödinger who stressed that
point and agnosticism regarding the (in)determinism, see (Schrödinger, 1935).
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relativity.24 The introduction of the nonclassical ΦL under the guise
of L(H) has also provoked some attempts to recast it so as to regain
a sort of pre-quantum ontology based on D. Both quantum theory
and relativity are, of course, falsifiable, but the recurring point is that
the metaphysical packages associated with them should be dealt with
seriously, proportionally to the experimental support, since they are
not just a marginal speculative excess baggage. We suggest that to the
extent that metaphysics is interested in the goings-on in the physical
world, it is, from the very outset, the ‘twisted’ sheaf structure ΦL

itself that should be treated in all seriousness as a principal guide. In
this case, it also seems that it is pure metaphysics itself which may
profit from the pressure imparted by physics (even if falsified at some
point in the future), since the latter invites to construct new accounts
of potentiality which are not one-way dependent on the notion of
determinacy.

5. Conclusion

Quantum contextuality is a tough problem for any metaphysical realist,
since it puts very restrictive constraints on standard realist strategies
which are usually molded after their classical counterparts, for exam-
ple by sticking to the classical notions of actual state and possibility,
like possible spatio-temporal configuration or the intrinsic disposition
of a system. As I have stressed, the free inventiveness of metaphysics
is illimitable, however the interesting case of BKS is that the con-
structive costs – both metaphysical and physical – of adopting these

24 For example, they do not possess singularities (due to the trivial topology) or
homogenous curved universes, and introduce ad hoc some completely unobservable
scalar fields.
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different strategies vary rather markedly, which makes a choice be-
tween them not entirely equivalent or just a matter of personal taste.
In particular, the more one pushes toward retrieving DOR and turning
quantum probability into epistemic uncertainty, the more complex and
hidden (‘Ptolemaic’) the empirically inaccessible sector of a model
becomes, whether explosivist or superdeterministic with fine-tuning
and the violation of relativity.

If quantum potentiality is the real indefiniteness in mundo, not in
mente, and DOR collapses as a basic intuition, then quantum probabil-
ity itself is a completely novel type of ontic probability, the probability
sui generis of physically indefinite properties25, which has nothing to
do with classical ignorance, determinate counterfactuals, frequencies,
or decision making (Barnum et al., 2000). This is a challenge for
naturalistic metaphysics, since even philosophical theories of disposi-
tions are constructed with the tacit assumption of D, where complete
sets of dispositional properties are clumped in objects or regions of
spacetime as some definite ‘elements of reality’ producing causal
responses. If one takes quantum potentiality to be real, OR might still
be perfectly true as a necessary condition of realism per se, there is
indeed a fully objective reality, but D is in general false, and Specker’s
‘Absolute Observer’ is an utter fiction, together with the corresponding
counterfactual logic of possibility.

As far as pure ontology is concerned, this is intriguing, since the
classical framework for possibility also takes the latter to be com-
pletely powerless as a faint Leibnizian shadow of actuality. If the
relation is reversed, it is the indefinite potentia that has full objectiv-

25 That was already recognized by e.g. von Neumann in the 1930s (von Neumann,
1962, pp.196–197) or Pauli (1994) without relying on any metaphysical analysis. Von
Neumann was the first who studied deep connection between quantum structure LL(H)

and generic quantum probability in the framework of what he called ‘probability
logics’.
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ity and the power for free actualization, while the definite actual is
derivative and powerless, like a much poorer shadow. It is impossible
to derive the former from the latter, as it is impossible to acquire the
quantum probabilistic measure and quantum correlations in space
and time from the (Boolean-)Kolmogorovian measure and shared
classical pseudo-randomness (Bub, 2014). Thus, the question is: in
metaphysics could we accept that autonomous cause or causal power
as an agential entity would be entirely non-spatiotemporal and indeter-
minate? Here I propose that indefiniteness in mundo should be indeed
taken as both objective potentiality-power and the generic resource
for quantum advantage.
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Quantum geometry, logic and
probability

Shahn Majid
School of Mathematics, Queen Mary University of London

Abstract
Quantum geometry on a discrete set means a directed graph with a
weight associated to each arrow defining the quantum metric. How-
ever, these ‘lattice spacing’ weights do not have to be independent
of the direction of the arrow. We use this greater freedom to give a
quantum geometric interpretation of discrete Markov processes with
transition probabilities as arrow weights, namely taking the diffusion
form ∂+f = (−∆θ + q − p)f for the graph Laplacian ∆θ, potential
functions q, p built from the probabilities, and finite difference ∂+ in
the time direction. Motivated by this new point of view, we intro-
duce a ‘discrete Schrödinger process’ as ∂+ψ = ı(−∆+ V )ψ for the
Laplacian associated to a bimodule connection such that the discrete
evolution is unitary. We solve this explicitly for the 2-state graph,
finding a 1-parameter family of such connections and an induced ‘gen-
eralised Markov process’ for f = |ψ|2 in which there is an additional
source current built from ψ. We also mention our recent work on the
quantum geometry of logic in ‘digital’ form over the field F2 = {0, 1},
including de Morgan duality and its possible generalisations.

Keywords
logic, noncommutative geometry, digital geometry, quantum gravity,
duality, power set, Heyting algebra.
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1. Introduction

These are notes growing out of a conference in Kraków with
the wonderful question “Is logic physics?”. My view is yes,

obviously. Indeed, I have long proposed (Majid, 1991) to think of
Boolean algebras as the ‘simplest theory of physics’, in which case
we should be able to see how physical and geometric issues in more
advanced theories emerge from structures already present there. If so,
then we can see the origin of physics in the very nature of language
and the structure of mathematical and physical discourse, a philosophy
that I have espoused as relative realism (Majid, 2012; 1991; 2015;
2014).

One of the things particularly to be explored in this way is the
evident role of entropy in the Einstein equations and its deep link
with gravity as an ingredient of quantum gravity. My proposal is that
while we may not be able to address this in quantum gravity itself,
we can try to move quantum gravity ideas back to simplified settings
such as finite graphs (Majid, 2019a) and Boolean algebras or digital
geometry (Majid and Pachoł, 2020a; Majid, 2020a) and see if it can be
addressed there. The present paper is a step in this direction towards
entropy and gravity: we see how probability and irreversible processes
can be seen naturally as emerging from quantum geometry.

Our main new results are in Section 3 in the context of graphs,
working over C and R. The idea is to explore a curious feature of
quantum geometry applied in the discrete case, namely that the lattice
‘square length’ x→ y need not be same as for y → x. In usual lattice
geometry, we would be focussed on the edge-symmetric case where
these coincide. I will argue that the asymmetric generalisation is the
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natural setting for probability and non-reversible processes. Thus, we
consider a Markov process

fnew(x) =
∑
y→x

py→xf(y) + (1− p(x))f(x),

where px→y denote the conditional transition probability from x to
y and p(x) =

∑
y:x→y px→y for each x. If we let ∂+ be the finite

difference on Z as the ‘discrete time’ then the Markov process appears
as

∂+f = −∆f + (q − p)f,

where q(y) =
∑

x:x→y px→y and ∆ is the canonical graph Laplacian
associated to a (typically degenerate) metric inner product defined by
the px→y, in which context it is natural that the value for x→ y need
not be the same as for y → x. In fact, the quantities that we should
really think of more geometrically as ‘length’ are the negative logs
λx→y of the probabilities, then the shortest length path in that sense is
indeed the path of maximum probability. Moreover, the shortest length
between two points then makes the space into a Lawvere metric space
(Fong and Spivak, 2019). Our point of view is that this is not so much
a ‘generalisation’ as what naturally arises in quantum geometry for
a discrete space; the real question is why distances are not direction
dependent in the continuum limit. Indeed, it could be argued that
many processes are irreversible, so already time between events is
measured in a directed way. In the present context, this is reflected
slightly differently in our probabilistic interpretation of ‘distance’ as
conditional transition probabilities.

Finally, our point of view leads us to introduce a ‘discrete
Schrödinger’s process’

∂+ψ = ı(−∆+ V )ψ
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and to ask what connections∇ are ‘unitary’ in the sense that f = |ψ|2
remains a probability density when we use the associated Lapla-
cian. We find (see Proposition 3.2) that the discreteness results in
the evolution of f being a generalised Markov process coupled to a
probability current source. Indeed, the discrete Schrödinger process
being unitary is reversible, so the irreversibility of the Markov pro-
cess on f is compensated by this source. We construct such a unitary
Schrödinger process explicitly for a 2-state graph • ←→ •, finding
a 1-parameter family of suitable connections. Unitary matrices are
the essence of quantum computing and what we have done is to con-
struct a certain family of them quantum geometrically in the spirit of
Schrödinger’s equation. Another motivation is the recent formulation
of ‘quantum geodesics’ (Beggs, 2020; Beggs and Majid, 2019) which
indeed includes the actual Schrödinger’s equation of ordinary quan-
tum mechanics. This work is not immediately applicable due to our
current use of discrete time, but these ideas should tie up in future
work.

We will use and make reference to a modern constructive ‘quan-
tum geometry’ formalism briefly outlined in Section 2; see (Beggs
and Majid, 2020) for details and the extensive literature cited therein.
This approach starts with a unital algebra A and choice of differen-
tial structure (Ω1,d) on it and then proceeds to metrics, connections,
curvature and so forth. Growing out of many years experience with
quantum groups but in no way limited to them, it is very different in
flavour from the well-known approach of A. Connes (Connes, 1994)
coming out of cyclic cohomology and ‘spectral triples’ as abstract
‘Dirac operators’, though with the possibility of useful interaction
between the approaches (Beggs and Majid, 2017).

Another aspect of the constructive approach is that it works over
any field, which makes possible the ‘digital’ case by working over the
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Figure 1: Quantum gravity and quantum mechanics/computing mediated by
quantum geometry over C. Digital geometry as a limiting case.

field F2 = {0, 1} of two elements (Bassett and Majid, 2020; Majid
and Pachoł, 2018; 2020a) and allows in principle the transfer of geo-
metric ideas to digital electronics, see Figure 1. A brief overview is in
Section 4 with some modest new results for the quantum geometry
of A =M2(F2). In the same vein, one could in theory put something
like a digital wave operator for a black hole background onto a silicon
chip. A motivation here is again from quantum computing. While in
quantum computing, a gate is replaced by a unitary operator (which in
turn we envisage could be constructed quantum geometrically, e.g. by
a Schrödinger process), the essential feature here is the use of vector
spaces (the superposition principle) to massively parallelise computa-
tions. However, linear algebra works over any field. Hence, if we build
our gates quantum geometrically then we could specialise them over
other fields, including over F2 as ‘digital quantum computing’. Even
if this did not have the speed benefits of actual quantum computing, it
would provide conventionally realisable training wheels for the real
thing.
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2. Outline of quantum geometry

It is well-known that classical geometry can be formulated equiva-
lently in terms of a suitable algebra of functions on the space. The
idea in noncommutative or ‘quantum’ geometry is to allow this to be
any algebra A with identity as our starting point (and now no actual
space need exist). We replace the notion of differential structure on
a space by specifying a bimodule Ω1 of differential forms over A. A
bimodule means we can multiply a ‘1-form’ ω ∈ Ω1 by ‘functions’
a, b ∈ A either from the left or the right and the two should associate
according to

(1) (aω)b = a(ωb).

We also need d : A→ Ω1 an ‘exterior derivative’ obeying reasonable
axioms, the most important of which is the Leibniz rule

(2) d(ab) = (da)b+ a(db)

for all a, b ∈ A. We usually require Ω1 to extend to forms of higher
degree to give a graded algebra Ω = ⊕Ωi (where associativity extends
the bimodule identity (1) to higher degree). We also require d to
extend to d : Ωi → Ωi+1 obeying a graded-Leibniz rule with respect
to the graded product ∧ and d2 = 0. This ‘differential structure’ is
the first choice we have to make in model building once we fixed the
algebra A. We require that Ω is generated by A,dA as it would be
classically. Next, on an algebra with differential, we define a metric
as an element g ∈ Ω1 ⊗A Ω1 which is invertible in the sense of a map
( , ) : Ω1 ⊗A Ω1 → A that commutes with the product by A from the
left or right and inverts g in the sense

(3) ((ω, )⊗A id)g = ω = (id⊗A ( , ω))g
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Figure 2: Some axioms of quantum Riemannian geometry. In order: invert-
ibility of a metric, tensor product bimodule connection, Riemann curvature
and Ricci curvature tensor and scalar. Diagrams are read down the page as a
series of compositions.

for all 1-forms ω. This is shown in Figure 2. In the general theory,
one can require quantum symmetry in the form ∧(g) = 0, where we
consider the wedge product on 1-forms as a map ∧ : Ω1 ⊗A Ω1 →
A and apply this to g. However, we don’t need to require this and
moreover we can also work with g non-invertible or ( , ) degenerate.

Finally, we need the notion of a connection. A left connection on
Ω1 is a linear map ∇ : Ω1 → Ω1 ⊗A Ω1 obeying a left-Leibniz rule

(4) ∇(aω) = da⊗A ω + a∇ω

for all a ∈ A,ω ∈ Ω1. This might seem mysterious but if we think
of a map X : Ω1 → A that commutes with the right action by A
as a ‘vector field’ then we can evaluate ∇ as a covariant derivative
∇X = (X ⊗A id)∇ : Ω1 → Ω1 which classically is then a usual



198 Shahn Majid

covariant derivative on Ω1. There is a similar notion for a connection
on a general ‘vector bundle’ expressed algebraically. Moreover, when
we have both left and right actions of A forming a bimodule, as we do
here, we say that a left connection is a bimodule connection (Dubois-
Violette and Michor, 1996; Beggs and Majid, 2014), if there also
exists a bimodule map σ such that

(5) σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1, ∇(ωa) = (∇ω)a+ σ(ω ⊗A da)

for all a ∈ A,ω ∈ Ω1. The map σ, if it exists, is unique, so this is
not additional data but a property that some connections have. The
key thing is that bimodule connections extend automatically to tensor
products as

(6) ∇(ω ⊗A η) = ∇ω ⊗A η + (σ(ω ⊗A ( ))⊗A id)∇η

for all ω, η ∈ Ω1, so that metric compatibility now makes sense as
∇g = 0. This is shown in Figure 2. A connection is called QLC or
‘quantum Levi-Civita’ if it is metric compatible and the torsion also
vanishes, which in our language amounts to ∧∇ = d as equality of
maps Ω1 → Ω2. Given a metric inner product ( , ) and a connection
∇, one has divergence and geometric Laplacian

(7) ∇ · ω = ( , )∇ω, ∆a = ( , )∇da

for all ω ∈ Ω1, a ∈ A.
We also have a Riemannian curvature for any connection,

(8) R∇ = (d⊗A id− id ∧∇)∇ : Ω1 → Ω2 ⊗A Ω1,

where classically one would interior product the first factor against a
pair of vector fields to get an operator on 1-forms. Ricci requires more
data and the current state of the art (but probably not the ultimate way)
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is to introduce a lifting bimodule map i : Ω2 → Ω1 ⊗A Ω1. Applying
this to the left output of R∇, we are then free to ‘contract’ by using
the metric and inverse metric to define Ricci ∈ Ω1 ⊗A Ω1 (Beggs
and Majid, 2017). This is also shown in Figure 2.

Finally, and critical for physics, are unitarity or ‘reality’ proper-
ties. We mainly work over C and assume that A is a ∗-algebra (real
functions, classically, would be the self-adjoint elements). We require
this to extend to Ω as a graded-anti-involution (so reversing order with
an extra sign when odd degree differential forms are involved) and to
commute with d. ‘Reality’ of the metric and of the connection in the
sense of being ∗-preserving are imposed as (Beggs and Majid, 2014;
Beggs and Majid, 2017)

(9) g† = g, ∇ ◦ ∗ = σ ◦ † ◦ ∇; (ω ⊗A η)† = η∗ ⊗A ω∗,

where † is a natural ∗-operation on Ω1 ⊗A Ω1. These ‘reality’ condi-
tions in a self-adjoint basis (if one exists) and in the classical case
would ensure that the metric and connection coefficients are real.

In the case where there exists θ ∈ Ω1 such that da = [θ, a], one
says that the calculus is inner. Similarly, with graded-commutator
in higher degree. This is never possible in the classical case but is
rather typical in the quantum case. One then has that any bimodule
connection ∇ has the form (Majid, 2013)

∇ω = θ ⊗ ω − σ(ω ⊗ θ) + α(ω)

for some bimodule maps σ, α. A canonical (but not classical) choice
is σ = α = 0 in which case

∇θ = θ⊗, T∇θ
= −( ) ∧ θ, R∇θ

= θ2∧, ∇g = θ ⊗ g



200 Shahn Majid

so that this connection cannot be Levi-Civita for a nontrivial exte-
rior algebra or nontrivial metric. Nevertheless, it defines a canonical
divergence and canonical Laplacian according to (7), namely

∇θ · ω = (θ, ω), ∆θa = (θ,da) = −(da, θ) + [(θ, θ), a]

which we will use in Section 3 (note that the latter is ∆θ/2 in the
conventions of (Majid, 2013; Beggs and Majid, 2020)). Finding actual
QLCs is a much more involved problem and usually results in a
moduli space of ∇ rather than a unique one.

3. Asymmetric discrete geometry
andMarkov processes

We are interested in the case A = k(X) of functions on a discrete set
X with values in a field k. Here we necessarily have Ω1 = spankωx→y

with basis labelled by the edges of a graph on X. The bimodule
structure and exterior derivative are

f.ωx→y = f(x)ωx→y, ωx→y.f = f(y)ωx→y,

df = [θ, f ] =
∑
x→y

(f(y)− f(x))ωx→y,

where θ =
∑

x→y ωx→y. By definition, we don’t include self-arrows
in the graph (but it can be useful to extend the graph to allow them).
We assume that our graph is bidirected in the sense that if x→ y is
an arrow then so is y → x. In this case, we can define a metric inner
product ( , ) : Ω1 ⊗A Ω1 → A as the bimodule map

(ωx′→y′ , ωy→x) = δx′,xδy′,ypy→xδx,

for some metric weights py→x. Unlike usual quantum geometry, we
now do not suppose nondegeneracy in the sense that these are all
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nonzero. The arrows x→ y for which px→y ̸= 0 are the more relevant
subgraph but it is convenient to use the full bidirected graph for
Ω1 with the price that some of the weights could vanish. Given the
bimodule inner product, we use the canonical graph Laplacian (Majid,
2013) as above, which works out as

(10) −∆θf = (df, θ) =
∑
x→y

(f(y)− f(x))δxpy→x.

For the moment, we work over R and define functions

p, q ∈ R(X), p(x) =
∑
y:x→y

px→y, q(x) = (θ, θ) =
∑
y:x→y

py→x,

∀x, y ∈ X . We will assume that ( , ) is stochastic in the sense that

px→y ≥ 0, ∀x→ y, p(x) ≤ 1, ∀x ∈ X.

In other words, we do noncommutative geometry but with weights
in the Heyting algebra [0, 1]. In more conventional terms, we define
a Markov transition matrix by Px,y = px→y if x → y and Px,x =

1−p(x) with other entries zero, which is then right stochastic (all rows
sum to 1). One could equally extend the graph to allow self-arrows
with px→x = 1− p(x) on the extended graph, defining a generalised
calculus Ω̃1 in the sense of (Majid and Tao, 2019).

We also consider f ∈ R(X) a probability distribution so that f(x)
is the probability for each event x, or in vector terms f = (f(x))

is a stochastic row vector i.e. its elements are ≥ 0 and sum to 1. A
Markov process with transition probabilities px→y is an evolution of
such distributions, i.e., labelled by a step index i, with

(11) fi+1(x) =
∑
y

fi(y)Py,x =
∑
y

fi(y)py→x + (1− p(x))fi(x)
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with the convention that py→x = 0 if y → x is not an arrow of
the active graph. Here fi+1 is again stochastic since

∑
x fi+1(x) =∑

y fi(y) so that the normalisation is preserved.
The other ingredient is that the lattice line Z can be viewed as a

graph · · · •i → •i+1 → · · · and as such there is a 1-dimensional dif-
ferential calculus Ω1(Z) defined by the graph. As it happens, this is a
Cayley graph associated to the additive generator 1, which means
there is a basic left-invariant 1-form e+ with bimodule relations
e+f = R+(f)e+, where R+(f)i = fi+1, and exterior derivative
df = (∂+f)e+ with (∂+f)i = fi+1 − fi the usual 1-step discrete
time derivative. This is not bidirected and not suitable for a ∗-calculus
(we would be need Ω1 to be 2-dimensional as in (Majid, 2019b)) but
is more relevant at the moment.

Proposition 3.1. A discrete Markov process with probability distri-
bution fi(x) on X at each time i appears naturally as the quantum
differential equation

∂+f = −∆θf + (q − p)f,

where ∂+ acts on i and on the right we use the graph calculus on X
with ( , ), ∆θ defined by the transition probabilities.

Proof. We have already done the work and it remains only to write
(11) in terms of ∆θ in (10).

Thus, a Markov process is nothing other than the noncommutative
diffusion equation with a certain potential term which vanishes in the
doubly stochastic case where p = q. An example of a right stochastic
matrix is shown in Figure 3. The novel idea here is that probabilities
play the role of ‘quantum metric inner product’ and that we obtain
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Figure 3: Markov process state diagrams on vertex set X with transition
probabilities labelling arrows of an extended graph. Associated functions on
the left are p = (0.6, 0.4, 0.8, 0.2), q = (0.2, 0.7, 0.4, 0.7) in vertex order as
numbered.

a quantum geometric picture if we use the canonical Laplacian as-
sociated to this. The latter can coincide with the Laplacian for other
more geometric connections (there are several examples in (Beggs
and Majid, 2020) where that happens).

We can go further and extend the geometric meaning of a Markov
process by tropicalisation, i.e., by writing

px→y = e−λx→y , p(x) = e−λx→x , λx→y, λx→x ≥ 0

and observe that the transition probability after n-steps is

Pnx,y =
∑

γ:x→···→y

e−λ(γ); λ(γ) =

n−1∑
i=0

λxi→xi+1

where γ = x0 → x1 · · · → xn−1 → xn is an n-step path from x0 = x

to xn = y (in the extended graph where we allow self-steps). If we
think of λx→y as some kind of more geometric ‘asymmetric length’
associated to the arrow or self-arrow then λ(γ) is the ‘length’ of the
path γ. Thus we see how a generalised form of Riemannian geometry
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emerges as an interpretation of a Markov process, or conversely how
Markov processes emerge naturally from generalised Riemannian
geometry, with a contribution of maximal probability equated to a
path of shortest length. It is generalised in the sense that ‘lengths’ are
direction dependent; there is no assumption that λx→y = λy→x or
even that one is nonzero when the other is, and we also allow self-
arrow lengths λx→x. Figure 3 shows the shortest path in this sense
between 1 and 3 as via 2. In fact the generalised geometry here is
equivalent to the notion of a Lawvere metric space (Fong and Spivak,
2019) on the vertex set, where d(x, y) is the length of the shortest path.
The main difference is that in that context one would have λx,x = 0

whereas in our case these are determined by the values on the arrows
of the unextended graph. But in both cases, the self-arrow carries
no new information and the actual data is the same. Moreover, this
difference does not affect the shortest length provided these are all
≥ 0, which is a restriction on the unextended graph weights in our
case. In other words, we are not quite freely labelling the arrows by
lengths λx→y as there is a restriction∑

y:x→y

e−λx→y ≤ 1

at every vertex. This has the character of some kind of lower bound
on the ‘distances’ from every vertex except that it is not one minimum
e.g. Planck length, but shared between all local directions. Our obser-
vations may also be related to path integration defined by stochastic
processes, even though our starting point is a fresh one.

Finally, we consider if there is a Schrödinger version of a Markov
process. We recall that in usual quantum mechanics, if ψ obeys ψ̇ =
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( ıℏ2m∆ + V
ıℏ )ψ and normalisation ||ψ||L2 = 1 then the probability

density f = |ψ|2 obeys the conservation law

ḟ +∇ · J = 0, J = − ıℏ
2m

(ψ̄∇ψ − ψ∇ψ̄),

where J is the probability current. This implies that
∫
ḟ = 0 so that∫

f = 1 holds at all times. Also note the formal similarity of the
Schrödinger equation to an ‘imaginary time’ (Wick rotation) version
of the diffusion one.

We first compute in general that if we are on an inner ∗-differential
algebra with V = V ∗ ∈ A, θ∗ = −θ and ∗( , ) = ( , )flip(∗ ⊗ ∗) and
set f = ψ∗ψ as dependent on an additional continuous time with

ψ̇ = ı(−∆θ+V )ψ = ı(dψ, θ)+ıV ψ = −ı(θ,dψ)+ı[(θ, θ), ψ]+ıV ψ

then
ψ̇∗ = ı(θ,dψ∗)− ıψ∗V

so that

ḟ = ψ̇∗ψ + ψ∗ψ̇ = ı(θ,dψ∗)ψ − ıψ∗(θ,dψ) + ıψ∗[(θ, θ), ψ].

If A is commutative then this reduces to

ḟ = −( , )(θ ⊗ J) = −∇θ · J, J = ı ((dψ)ψ∗ − (dψ∗)ψ)

as the probability current 1-form, where ∇θ = θ⊗ is the canonical
connection. This remark only applies to continuous time, and more-
over, we do not necessarily have

∫
: A → R specified, and even if

we did, we may not have
∫
∇θ · J = 0 for all ψ. In case of an honest

quantum metric and QLC, we might expect that
∫

can be chosen
depending on the metric so that integral of a divergence does vanish
as in Riemannian geometry (it is not clear how generally we could do
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this). However, in our asymmetric setting, this seems unlikely both
mathematically and physically; we should not expect actual conserved
probability, but rather we have a formal similarity as well as an ele-
ment of irreversibility. A partial result at our graph theory level is the
following.

Proposition 3.2. Let ψi ∈ C(X) be complex valued, V ∈ R(X) real
valued, fi = |ψi|2 and suppose that

∂+ψ = ı(−∆θ + V )ψ,

where ∂+ acts on the discrete time index i. Then

∂+f = V (−∆θ + V )f + V (dψ̄,dψ)−∇θ · J,

J = ı((dψ)ψ̄ − (dψ̄)ψ)− 1

2
((dψ)∆θψ̄ + (dψ̄)∆θψ)

which we can also write as

∂+f = V 2f −∇θ · JV ,

JV = ı((dψ)ψ̄−(dψ̄)ψ)+(dψ)(−1

2
∆θ+V )ψ̄+(dψ̄)(−1

2
∆θ+V )ψ.

Proof. Here −∆θψ = (dψ, θ) etc., so at the next time step,

ψnew = ψ + ı((dψ, θ) + V ψ), ψ̄new = ψ̄ − ı((dψ̄, θ) + V ψ̄),

fnew = (ψ̄ − ı((dψ̄, θ) + V ψ̄))(ψ + ı((dψ, θ) + V ψ))

= f + ((dψ̄, θ) + V ψ̄)((dψ, θ) + V ψ) + ıψ̄(dψ, θ)− ı(dψ̄, θ)ψ
= (1 + V 2)f + (dψ̄, θ)(dψ, θ) + (dψ, θ)(ı+ V )ψ̄

+ (dψ̄, θ)(−ı+ V )ψ

with a cross term V ψ̄ψ cancelling. Next

(dψ̄, θ)ψ = (dψ̄, θψ) = (dψ̄,dψ)+(dψ̄, ψθ) = (dψ̄,dψ)+((dψ̄)ψ, θ)
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so this combined with ψ̄(dψ, θ) = (ψ̄dψ, θ) contributes V (df, θ) +

V (dψ̄,dψ) to fnew. We also note that

−(θ, (dψ)ψ̄−(dψ̄)ψ) = −(θ,dψ)ψ̄+(θ,dψ̄)ψ = (dψ, θ)ψ̄−(dψ̄, θ)ψ

which times ı verifies the first term of J . It remains to note that

−(θ, (dψ̄)(dψ, θ)) = −(θ, (dψ)(dψ̄, θ)) = (dψ̄, θ)(dψ, θ)

which times 1/2 for each expression as in J, gives the remaining term
needed for fnew. This gives our first expression for ∂+f = fnew − f .
For the second expression, we note that

−(θ, (dψ̄)V ψ+(dψ)V ψ̄)

= V ψ̄(dψ, θ) + V ψ(dψ̄, θ) = V (df, θ) + V (dψ̄,dψ)

as required for the extra terms in JV to replace the corresponding
terms in fnew.

Writing

J =
∑
x→y

Jx→yωx→y, ψ̃(y) =
∑
y:x→y

ψ(y)py→x,

explicit formulae for the various terms are

(dψ̄,dψ)(x) =−
∑
y:x→y

f(y)py→x − f(x)q(x)

+
∑
y:x→y

(ψ(x)ψ̄(y) + ψ̄(x)ψ(y))py→x

Jx→y = ı(ψ(y)ψ̄(x)− ψ̄(y)ψ(x)) + 1

2

(
ψ(y)

¯̃
ψ(x) + ψ̄(y)ψ̃(x)

−ψ(x) ¯̃ψ(x)− ψ̄(x)ψ̃(x)− (ψ(y)ψ̄(x) + ψ̄(y)ψ(x))q(x)
)
+ f(x)q(x)
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and the additional terms in JV x→y are

V (x)(ψ(y)ψ̄(x) + ψ̄(y)ψ(x)− 2f(x)).

A direct calculation from fnew in the proof above also gives:

Proposition 3.3. For the discrete Schrödinger process ∂+ψ =

ı(−∆θ + V )ψ, we have∑
X

∂+f =
∑
X

(
(V − q)2f + (V − q)(ψ̄ψ̃ +

¯̃
ψψ) + |ψ̃|2 + ı(ψ̄ψ̃ − ¯̃

ψψ)
)

for f = |ψ|2.

This is typically not zero, i.e. the discrete Schrödinger process
with the ∇θ connection does not leave the l2-norm

∑
x |ψ|2 constant,

i.e. does not consist of unitary steps. This is visible even for V = q,
when ∂+ψ = ıψ̃, and is due in part to the 1-sided step ∂+f not
reflecting a ∗-calculus on Z. It is also due to the connection ∇θ being
a convenient but not necessarily physical choice. Nevertheless, we see
from the proposition that ∂+f has a certain form which, when V = 0,
is ∂+f = −∇θ · J as expected in quantum mechanics from a formal
point of view, while for other V also contains a Markov-process like
element.

3.1. Example of 2-state process

More generally, we should consider the discrete Schrödinger
process with other bimodule connections ∇ on Ω1 and the associated
∆ and ∇· from (7). We will say that a connection ∇ is unitary if there
exists a potential V such that ∂+ψ = ı(−∆+ V )ψ indeed has unitary
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steps so that the total probability is conserved. In the remainder of
this section, we explore this idea for the simplest example of a two
state process.

Thus, let X = {0, 1} with α = p1→0 > 0 and β = p0→1 > 0

define a classical 2-state Markov process as shown on the right in
Figure 3. In addition to this process interpreted as in Proposition 3.1
in terms of ∇θ, we consider the same ideas as in Proposition 3.2 but
for Laplacian and divergence given by a general bimodule connection
∇. It is known from (Majid, 2019a, Lemma 2.1) that these take the
form

∇θ = (1− b)θ ⊗ θ, b(0) = s, b(1) = t

for two complex parameters s, t. Here, θ = ω0→1 + ω1→0 is a basis
over the algebra, so it is enough to specify∇ on this. Its general value
deduced from the Leibniz rule

∇(ψθ) = dψ ⊗ θ + ψ∇θ; dψ = (ψ(1)− ψ(0))(ω0→1 − ω1→0)

comes out as

(12)
∇ω0→1 = ω1→0 ⊗ ω0→1 − sω0→1 ⊗ ω1→0,

∇ω1→0 = ω0→1 ⊗ ω1→0 − tω1→0 ⊗ ω0→1.

Meanwhile, the metric inner product is

(ω0→1, ω1→0) = αδ0, (ω1→0, ω0→1) = βδ1

and it is known also from (Majid, 2019a, Lemma 2.1) that∇ is metric
compatible (and hence a QLC for the standard exterior algebra) if and
only if β = ±α, which in our context means β = α, and t = s−1.
Moreover, in this case it is ∗-preserving if and only if s has modulus
1. So there is a circle of ∗-preserving QLCs, including the obvious
s = t = −1 with ∇θ = 2θ ⊗ θ. By contrast, the canonical one we
studied above was ∇θθ = θ ⊗ θ at s = t = 0.
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We proceed with a general bimodule connection (12) for our
discussion, remembering that it is a QLC only when β = α and
s = t−1. The metric inner product is

(ω0→1, ω1→0) = αδ0, (ω1→0, ω0→1) = βδ1

so that the Laplacian comes out as as

(∆ψ)(0) = −δψα(1 + s), (∆ψ)(1) = δψβ(1 + t); δψ := ψ(1)− ψ(0).

The discrete Schrödinger process ∂+ψ = ı(−∆ + V )ψ then corre-
sponds to the matrix step on the column vector ψ(0), ψ(1),

ψnew = Uψ;

U =

1 + ıV (0)− ıα(1 + s) ıα(1 + s)

ıβ(1 + t) 1 + ıV (1)− ıβ(1 + t)

 ,

which is unitary if and only if

ıα(1 + s) = −eıϕz̄, |1 + ıV (1)− z|2 + |z|2 = 1,

1 + ıV (0) = −eıϕ(2z̄ − 1 + ıV (1)),

where z = ıβ(1 + t) and eıϕ is some phase. This has solution

(13)
V (0) = V (1) = 0, z =

1

2
(1− eıϕ),

s = −1− ı

2α
(1− eıϕ), t = −1− ı

2β
(1− eıϕ)

for a free angle parameter ϕ, with resulting Schrödinger process step

(14) U =

1− z z

z 1− z

 = e
ıϕ
2

 cos(ϕ2 ) −ı sin(ϕ2 )
−ı sin(ϕ2 ) cos(ϕ2 )

 .
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Thus, the 2-point graph has a 1-parameter circle of bimodule connec-
tions ∇ which are ‘unitary’ in the sense that the step operator U is
unitary. Some examples are:

(i) ϕ = 0 or z = 0 gives s = t = −1 in the QLC family and

∇θ = 2θ ⊗ θ, U = id;

(ii) ϕ = π or z = 1 gives s = −1− ı
α and t = −1− ı

β and

∇θ = (2 +
ı

γ
)θ ⊗ θ; γ(0) = α, γ(1) = β; U =

0 1

1 0

 .

By contrast, our canonical ∇θ = θ ⊗ θ at s = t = 0 is not on this
circle.

Proposition 3.4. For the 1-parameter circle of unitary discrete
Schrödinger evolutions (13)–(14), and writing f = |ψ|2 in vector
notation, we find

fnew =

cos2(ϕ2 ) sin2(ϕ2 )

sin2(ϕ2 ) cos2(ϕ2 )

 f

+
ı

2
sin(ϕ)

(
ψ̄(0)ψ(1)− ψ̄(1)ψ(0)

)−1
1

 .

The first term is a general left and right stochastic Markov process on
f . In quantum geometric terms,

∂+ψ = −ı∆ψ, ∂+f =
1

2ı
(1− e−ıϕ)∆f −∇ · J,

J =
ı

2
(1 + e−ıϕ)

(
(dψ)ψ̄ − (dψ̄)ψ

)
.
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Proof. Here

fnew(0) = |ψnew(0)|2 = |(1− z)ψ(0) + zψ(1)|2

= |1− z|2f(0) + |z|2f(1) + (1− z̄)zψ̄(0)ψ(1)
+ z̄(1− z)ψ̄(1)ψ(0)

= cos2(
ϕ

2
)f(0) + sin2(

ϕ

2
)f(1)− ı

2
sin(ϕ)(ψ̄(0)ψ(1)

− ψ̄(1)ψ(0))

and similarly for fnew(1) = |ψnew(1)|2 = |(1 − z)ψ(1) + zψ(0)|2.
Note that the entries of f remain positive and summing to 1 even
though there is an extra divergence term.

We next consider a general 1-form J = J01ω0→1 + J10ω1→0 for
constants J01, J10 and find from (12) and (13) that

∇ · J = ( , )
(
J01(ω1→0 ⊗ ω0→1 − sω0→1 ⊗ ω1→0)

+ J10(ω0→1 ⊗ ω1→0 − tω1→0 ⊗ ω0→1)
)

= (J10 − sJ01)αδ0 + (J01 − tJ10)βδ1
= (J01 + J10)γ +

ı

2
(1− eıϕ)j

where γ(0) = α, γ(1) = β and j(0) = J01, j(1) = J10 are functions
on X. If we set J01 = −J10 = ı

2 (1 + e−ıϕ)(ψ̄(0)ψ(1) − ψ̄(1)ψ(0))
then −∇ · J gives the second term of fnew as required. This gives J
as stated after we observe that

(dψ)ψ̄ − (dψ̄)ψ = (ψ(1)− ψ(0))(ω0→1 − ω1→0)ψ̄

− (ψ̄(1)− ψ̄(0))(ω0→1 − ω1→0)ψ

= (ψ(1)− ψ(0))ψ̄(1)ω0→1 − (ψ(1)− ψ(0))ψ̄(0)ω1→0

− (ψ̄(1)− ψ̄(0))ψ(1)ω0→1 + (ψ̄(1)− ψ̄(0))ψ(0)ω1→0

= (ψ̄(0)ψ(1)− ψ̄(1)ψ(0))(ω0→1 − ω1→0).
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Moreover, df = (f(1)− f(0))(ω0→1 − ω1→0). Hence, using our
computation of ∇·,

∆f = ∇ · df =
ı

2
(1− eıϕ)(f(1)− f(0))

 1

−1


=
ı

2
(1− eıϕ)

−1 1

1 −1

 f

in vector notation for f (which, when applied to ψ, recovers the
Schrödinger process step U = 1− ı∆ in (14) as expected). Moreover,
the stated first term of ∂+f is then

1

2ı
(1− e−ıϕ) ı

2
(1− eıϕ)

−1 1

1 −1

 f = sin2(
ϕ

2
)

−1 1

1 −1

 f

as required in fnew − f .

For the l2-norm, we took the constant measure in summing over
X. One could also, in principle, introduce a measure related to the
quantum metric ( , ). This would be more in keeping with Riemannian
geometry but is not so natural from our point of view on Markov
processes (where the usual constant measure is preserved).

4. Digital geometry of 2× 2matrices

Quantum Riemannian geometry and quantum gravity on one of the
simplest graphs, a quadrilateral, was recently achieved (Majid, 2019a)
(with Lorentzian style negative square-length weights on two of the
sides). Here we briefly look at the complementary example of a
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noncommutative finite geometry, namely the humble algebra of 2× 2

matrices M2(C). Its quantum Riemannian geometry turns out to be
rather rich and is not fully explored.

We take the standard 2D ∗-differential calculus from (Beggs
and Majid, 2017; 2020) with a basis of central 1-forms s, t ∈ Ω1(M2),
differential and exterior algebra

da = [E12, a]s+ [E21, a]t,

s2 = t2 = 0, s∧t = t∧s, ds = 2θ∧s, dt = 2θ∧t, s∗ = −t,

which is inner with θ = E12s + E21t. Here Eij is the matrix with 1

in the (i, j) place and 0 elsewhere.
Next, as the basis is central and the metric has to be central to

be invertible in the bimodule sense, any invertible 2 × 2 complex
matrix gij in our basis can be taken as metric coefficients, with the
condition that g12 = −g21 if we want to impose quantum symmetry,
and g22 = g11, g12 real if we want g to be ‘real’ in the required
hermitian sense. It is easy to see that

(15) ∇s = 2θ ⊗ s, ∇t = 2θ ⊗ t, σ = −flip, R∇ = 0

on the generators is a flat QLC simultaneously for all quantum metrics.
But there are typically many more QLCs. The actual moduli of these
has only been computed in (Beggs and Majid, 2020, Example 8.13
and Exercise 8.3) for a couple of sample quantum metrics g1, g2, with
results there as follows.
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(i) g1 = s⊗ t− t⊗ s. This has a principal 4-parameter moduli of
QLCs of the form

∇s =2θ ⊗ s−

0 µα

β 0

 s⊗ s−

 0 α

νβ 0

 g1

+

 0 να

ν2β + (µν − 1)α 0

 t⊗ t,

∇t =2θ ⊗ t+

 0 µ2α+ (µν − 1)β

µβ 0

 s⊗ s

+

0 µα

β 0

 g1 −

 0 α

νβ 0

 t⊗ t.

The α = β = µ = ν = 0 point is the flat one (15). We rescaled the
µ, ν compared to (Beggs and Majid, 2020) here and in the next case.

(ii) g2 = s⊗ s+ t⊗ t. This has a principal 3-parameter moduli
of QLCs of the form

∇s =2E21t⊗ s+

 0 µρ

2µ− ρ(1 + µ(µ+ ν)) 0

 s⊗ s

+

 0 −ρ
µρ 0

 g1 +

0 νρ

ρ 0

 t⊗ t,

∇t =2E12s⊗ t+

 0 −ρ
µρ 0

 s⊗ s−

0 νρ

ρ 0

 g1

+

 0 −2ν + ρ(1 + ν(µ+ ν))

νρ 0

 t⊗ t.
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There are restrictions on the parameters over C for a ∗-preserving
connection. The µ = ν = ρ = 0 point has curvature

R∇s = 2s ∧ t⊗ s, R∇t = 2s ∧ t⊗ t.

We also have an obvious ‘symmetric lift’ i(s ∧ t) = 1
2 (s⊗ t+ t⊗ s)

which at the zero parameter point yields

Ricci = s⊗ t+ t⊗ s, S = 0,

but note that i in the ∗-algebra case is not antihermitian in the required
sense so that this Ricci is not hermitian.

The above are principal moduli with nontrivial σ and zero for
the bimodule map α in the general construction; there is also a 4
dimensional moduli of QLCs for g2 with σ = −flip. In general, the
space of ∗-preserving ‘real’ pairs (g,∇) appears to be generically 7
dimensional, although this remains to be determined. Once known,
one could define quantum gravity on M2(C) by integration over this
moduli, schematically,

⟨O1O2⟩ =
∫
D(g,∇)eıTrS[g,∇]O1O2∫
D(g,∇)eıTrS[g,∇]

for the given differential structure and lift i fixed. Here S[g,∇] ∈
M2(C) is the Ricci scalar, which generically is expected not to vanish.
One could also consider summing or integrating over the choice of
differential structure up to diffeomorphism.

It is natural to ask how this approach to quantum gravity com-
pares to other, more established, approaches. A direct comparison
is not possible due to very different methodologies, but taking the
‘coordinate algebra’ finite dimensional as we did above is broadly in
the spirit of replacing spacetime by a finite geometry, such as a finite
lattice or triangulation (Ambjørn, Jurkiewicz and Loll, 2001). A main
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difference in our case is that we approach the matter in a coherent
way that applies, as we saw in Section 2, to general algebras including
finite-dimensional ones at one end of the range and classical C∞(M)

for a manifold M at the other, without too many ad-hoc steps. A
consequence is that one can in principle take a limiting process from
one to the other without ever leaving the category of models. Thus, the
polygon lattice Zn in (Argota-Quiroz and Majid, 2020) with its 2D
calculus can be seen in the limit n→∞ to tend to S1 with a certain
2D calculus. This turns out to be a central extension of the classical
calculus on a circle in the sense of (Majid, 2020b; Beggs and Majid,
2020, Chapter 8.3), where the ‘partial-derivative’ associated to the ex-
tra dimension is a 2nd order Laplacian-like operator giving something
like an Ito derivative in stochastic calculus. Here, the polygon graph
is viewed as bidirected i ↔ i + 1 at vertices numbered in sequence
mod n, and this is the reason for the 2D calculus. As we have seen
in Section 3, we can also work with 1-way arrows x → y, and this
could make contact with causal set models (Dowker, 2013) where
x → y indicates a causal path between spacetime points. So far in
quantum Riemannian geometry models, the Lorentzian case has been
handled by having ‘square-length’ weights< 0 on designated timelike
edges (Majid, 2019a). In such models, one could think of the causal
structure as a choice of orientation of the subgraph of timelike edges
(choosing an arrow direction for each such edge).

Other approaches such as loop quantum cosmology (Ashtekar
et al., 2007) also drastically cut the degrees of freedom to the point of
computability. From such models as well as from experience with 2+1
quantum gravity, it does appear that some quantum gravity effects
could be modelled by a noncommutative spacetime, which is support
for our underlying framework. What we would hope for here is a kind
of ‘eigengeometry’ where quantum gravity effects render spacetime
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noncommutative as a better approximation than classical, then quanti-
sation of gravity on that background results in effects which justify
the supposed quantum spacetime as the effective background. This
is a circular self-consistency condition, the content of which has yet
to be understood. There have also been attempts at discrete quantum
gravity in Connes’ spectral triple approach to noncommutative geom-
etry, where one integrates over possible Dirac operators (Hale, 2002)
on Z2. Although very different, the results are not unlike the those
of (Majid, 2019a; Argota-Quiroz and Majid, 2020) in that there is a
constant relative uncertainty. This work also looks at integration over
spectral triples on M2(C).

Next, what about the landscape of all finite quantum Riemannian
geometries of small algebra dimension? This is a tough classification
programme and so far has been achieved (Majid and Pachoł, 2020a)
only up to dimension 3 and by specialising to the digital case over the
field F2 = {0, 1} to simplify the problem. Here algebra dimension 2
has no interesting quantum geometries, while for dimension 3 there
are 7 algebras labelled A–G but only B,D,F admit regular 2D quantum
Riemannian geometries, as summarised in the table in Figure 4. Here
B is the Boolean algebra of subsets of a set of three elements with
calculus and metric corresponding to an equilateral triangle graph,
forming the group Z3. It is a Hopf algebra and its dual is the group
algebra D= F2Z3. Its three quantum metrics are related by an overall
element of the algebra (i.e., ‘conformally equivalent’ in some sense).
In each case, the 4 QLCs with 1 flat and 3 nonflat is the opposite of
what was found for B, possibly consistent with Hopf algebra duality
interchanging high and low curvature (cf. Majid, 1988; 1991). For
F8, the 7 metrics are again related by invertible factors but fall into
three groups behaving differently as shown in the table. Details of the
connections and curvatures are given in (Majid and Pachoł, 2020a).

For interesting examples with the algebra noncommutative, we
therefore need to go to dimension n = 4, which was beyond the
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Figure 4: Number of quantum geometries over F2 of algebra dimension 3
and 2D parallelisable calculus Ω. Data from (Majid and Pachoł, 2020a).

computer power available when writing (Majid and Pachoł, 2020a)
(where QLCs were found by trying some 224 possible connection
values). As a result, the landscape of all quantum geometries for
n = 4 is largely unexplored, though some flat connections are known
for the algebra A2 in the family of Hopf algebras over F2 in (Bassett
and Majid, 2020). In dimension 4, there are 9 distinct noncommutative
algebras (Majid and Pachoł, 2020b) (and 16 commutative ones) over
F2, and one of the former is of course M2(F2).

Here we note that by reducing the above generic solutions for
M2(C) to the F2 case, we can obtain some, though not necessarily all,
of the quantum geometries on M2(F2), at least for the two metrics
stated above. Since 2=0 in F2, we now have ds = dt = 0, and indeed
t = dE12, s = dE21 are exact. Setting the parameters for our generic
solutions to all values 0,1 gives us up to 16 and 8 QLCs respectively
for our standard metrics, which appear now as

g1 = s⊗ t+ t⊗ s, g2 = s⊗ s+ t⊗ t.

We broadly identify four cases:
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(a) Setting α = β = ρ = 0 and any µ, ν gives the zero flat QLC
∇s = ∇t = 0 for both metrics.

(b) Setting α = β = ρ = 1 and µ = ν = 1 gives another flat QLC

∇s = ∇t = σ1(g1 + g2), R∇ = 0

for both metrics, on noting that ∇(s+ t) = 0. Here σ1 = E12 + E21.
(c) Setting α = β = ρ = 1 and µ = ν = 0 gives another flat QLC

∇s = E12g1 + E21g2, ∇t = E21g1 + E12g2, R∇ = 0

for both metrics, on noting that d(E12t) = d(E21s) = 0 and
d(E12s) = d(E21t) = s ∧ t.

Figure 5: Nonzero QLCs on M2(F2) arising as limits of connections over
C (which may not be all of them). All are for g1 except the ρ = 1 rows for
g2, which are flat. We see 6 with curvature, where V = s ∧ t is the ‘volume
form’.
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(d) For curvature, we therefore need to look to α ̸= β or µ ̸= ν.
The nonzero ones are shown in the table Figure 5, where we see that
half of them have Riemann curvature, all QLCs for the metric g1.

Next, the usual lift i needed for the Ricci curvature, and the
Einstein tensor, both present a problem over F2 in that there is no 1/2

at our disposal. Our approach in (Majid and Pachoł, 2020a) is to look
at all possible i and tentatively to define Eins = Ricci + gS. Now we
explore a different idea which is not systematic but applies when the
exterior algebra has a suitable form, namely to look for two halves of
the classical ‘antisymmetric’ lifts’ separately, without the factor 1/2.
For the M2(F2) calculus as above, obvious choices would be

i+(s ∧ t) = s⊗ t, i−(s ∧ t) = t⊗ s.

As a result, there are two natural Ricci tensors Ricci± as defined with
i±. If S+ = S− = S, i.e., if the two Ricci scalars are the same then
we propose the ‘twice-Ricci’ and ‘twice-Einstein’ tensors

2Ricci = Ricci+ +Ricci−, 2Eins = 2Ricci + gS.

For the 3-dimensional Boolean algebra B, this gives 2Ricci = g,
S = 1 and 2Eins = 0 but for the D algebra one has S+ ̸= S− for the
obvious lifts (which is not to say the new approach could not work,
for suitable i±.)

Proposition 4.1. On M2(F2) with the metric g1 as above and its
two nonflat joint QLCs in Figure 5 with curvature R∇s = R∇t =

s ∧ t⊗ (s+ t), we have

Ricci+ = t⊗ (s+ t), Ricci− = s⊗ (s+ t), S± = 1;

2Ricci = g1 + g2, 2Eins = g2.
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Moreover, ∇ here are also QLCs for g2 and hence ∇(2Ricci) =

∇(2Eins) = 0. The three other types of curvature for QLCs of g1 in
Figure 5 have S+ ̸= S−.

Proof. We use the curvature as shown and take the ‘trace’ with respect
to g1 as this is the relevant metric. Since the output of R∇ is the same
on s, t,

Ricci+ = ((s+ t, )⊗ id)(s⊗ t⊗ (s+ t)) = t⊗ (s+ t), S+ = 1,

Ricci− = ((s+ t, )⊗ id)(t⊗ s⊗ (s+ t)) = s⊗ (s+ t), S− = 1.

In this case, we also have 2Ricci = (s + t) ⊗ (s + t) = g1 + g2

on adding these. Hence adding Sg1 gives us the other metric. We
next look more closely at the two connections in the table with this
curvature. The one on the bottom line at α = µ = ν = 1 and β = 0

has braiding

σ(

st ⊗ s) = s⊗

st + g1 + g2, σ(

st ⊗ t) = t⊗

st .
Then since ∇ has the same value on s, t,

∇g2 = ∇s⊗ s+∇t⊗ t+ (σ ⊗ id)(s⊗∇s+ t⊗∇t)
= E12(g1 + g2)⊗ (s+ t) + E12(σ ⊗ id)((s+ t)⊗ (g1 + g2))

= E12(s+ t)⊗3 + E12(s+ t)⊗3

+ ((σ − flip)⊗ id)((s+ t)⊗ s⊗ (s+ t)) = 0,

where we apply σ as flip for all cases, plus the additional σ − flip

when acting on (s+ t)⊗ s in the second term, which contributes zero.
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The computations for the three other types of curvature of QLCs
for g1 are similar. For example, for R∇s = s∧ t⊗ (E11s+ t), R∇t =

s ∧ t⊗ (s+ E22t), we have

Ricci+ = t⊗ (t+ E11s), S+ = E11,

Ricci− = s⊗ (s+ E22t), S− = E22

so that S+ ̸= S−. Interestingly, S+ + S− = 1. These same values
of S± are also obtained for the other two cases. Hence for these
three curvature types, our definition of 2Eins does not apply, although
for the case shown, we do have 2Ricci + S+t ⊗ s + S−s ⊗ t = g2

again. One could still search for other more suitable i± (similarly to
the algebra D for n = 3) and meanwhile, in all cases, we can still
use the tentative proposal in (Majid and Pachoł, 2020a) to define
Eins± = Ricci± + S±g1.

The Einstein tensor vanishes automatically for a classical 2-
manifold, but this need not be the case in quantum geometry. We
see on this sample of connections on M2(F2) that 2Eins is conserved
when it applies but that the general picture for a suitable Einstein ten-
sor remains inconclusive. Stepping away from quantum Riemannian
geometry towards other applications relevant to computer science,
(Majid and Pachoł, 2020b) classified all quantum groups to dimension
4 over F2.

5. Beyond de Morgan duality

Quantum geometry also provides a geometric view of de Morgan
duality (Majid, 2020a), extending the well-known feature of Boolean
algebras that says that the negation of a Boolean expression has the
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same form with all elements negated, ∅ and everything swapped,
and ∪,∩ swapped. In propositional logic, this sends a ⇒ b to the
equivalent statement b̄⇒ ā, while in terms of the power set P (X) of
subsets of a set X , the duality sends a ⊆ X to its complement ā in X .

This was the topic of my conference talk and I refer to (Majid,
2020a) for details. In the present notes, I instead want to recall the
philosophical context and discuss what might come next. Therefore,
suffice it to say that one can view P (X) as an algebra over F2 with
product ∩ and addition ⊕ (the ‘exclusive or’ a⊕ b = (a ∪ b) ∩ a ∩ b
operation). Next, we fix a directed graph on X as vertex set and let
Arr be the set of arrows. Combining the graph calculus as in Section 3
with digital methods as in Section 4, we set Ω1(P (X)) = P (Arr)

with addition given by ‘exclusive-or’ of subsets of arrows and the
noncommutative bimodule structure (Majid, 2020a)

a ∩ ω := {arrows in ω with tail in a},
ω ∩ a := {arrows in ω with tip in a},

da = {arrows with one end in a and other end in ā},

where a ⊆ X and ā is its complement. One can go on and define the
maximal prolongation exterior algebra Ωmax(P (X)) as well as two
natural quotients.

We also define the dual algebra structure P̄ (X) as the same set
P (X) but with addition given by ‘inclusive and’ or ‘not-exclusive-or’
a⊕̄b = (a ∩ b) ∪ a ∪ b and product a ∪ b. We define Ω1(P̄ (X)) =

P̄ (Arr) with its ‘inclusive and’ as addition and (Majid, 2020a)

a ∪ ω = {arrows in ω or with tail in a},
ω ∪ a = {arrows in ω or with tip in a},

d̄a = {arrows wholly in a or wholly in ā} = da.

This too extends to Ωmax(P̄ (X)) and its two natural quotients.
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Theorem 5.1. (Majid, 2020a) The algebra map¯ : P (X)→ P̄ (X) is
a diffeomorphism, i.e. extends to a map of the corresponding differen-
tial exterior algebras.

That¯ is an algebra isomorphism is the usual de Morgan duality
of Boolean algebra in our algebraic language of digital geometry,
and the claim is that this extends in the right manner to arrows or
differentials of the graph calculus. The extension to 1-forms is just
complementation of subsets of arrows. The work (Majid, 2020a) also
shows how these ideas can be extended to any unital algebraA over F2

with Ā isomorphic via ā = 1+a, likewise becoming a diffeomorphism
for suitable differential structures.

This is a purely mathematical result but its philosophical moti-
vation is as follows. Indeed, some 30 years ago in (Majid, 1991),
I posed the question that if Boolean algebras are the simplest ‘the-
ory of physics’ then what becomes of de Morgan duality in more
advanced theories? I argued that while clearly broken by quantum
theory and gravity alone (for example, apples curve space but the
presence of not-apples, meaning the absence of apples, does not) such
a duality but might re-emerge as a symmetry of quantum gravity. This
was and still is meant to be thought-provoking speculation rather than
something understood, but the idea was that we might say that a region
of space is ‘as full of apples’ as GR allows (forming a black hole and
expanding if we put more apples in) while someone else using the
dual picture might say that this same region of space was as empty of
not-apples as their quantum field theory allows (where in QFT, space
is never completely empty in some sense due to vacuum fluctuations).
I don’t know if this vision is achievable, but what we can do is move
quantum gravity down to the digital level of geometry on Boolean
algebras and see if de Morgan duality indeed holds there. This is what
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is done in (Majid, 2020a) at the Boolean level in so far as GR is a
theory of metrics and connections on Ω1; all of that works in a dual
version. We also needed an element of ‘quantum’ in that our extension
of ∩,∪ to arrows was noncommutative, then Theorem 5.1 says that
de Morgan duality indeed holds as part of general covariance in some
extended sense.

This sense is admittedly a little weird. In usual GR, a diffeomor-
phism is induced by an underlying set map, but complementation
is different and operates directly on subsets of X. For example, if
S ∈ P (X) is the Ricci scalar for a connection then for the same
geometry it appears as S̄ on the other side of de Morgan duality. So in
a region where the curvature characteristic function has value 1 for us,
it has value 0 for them. Similarly, the inner generator θ ∈ Ω1(P (X))

is the sum of all arrows, or in some sense the ‘maximal density’ dif-
ferential form. Its role on the de Morgan dual side is played by the
zero element which is the inner generator for Ω1(P̄ (X)) but from the
first point of view is literally the zero differential form. All of this is
suggestive of the black-hole/vacuum discussion above but is probably
the most we can say at the Boolean level (where it is hard to think
about actual quantum theory).

On the other hand, more advanced theories of physics could
still have the duality we seek in an increasingly visible form. Thus,
speculatively, just as Schrödinger’s cat is in a mixed state that is
neither dead or alive, I have proposed (Majid, 2015) co-Schrödinger’s
cat as a cat falling into a black hole. This is both dead in finite proper
time and alive forever in the frame of the observer at infinity. In
other words, while quantum theory is intuitionistic as in a Heyting
algebra, where we relax the rule that a∪ ā =everything, gravity might
be expected to be cointuitionistic in character in the de Morgan dual
sense, as in a coHeyting algebra, where we relax the rule that a∩ā = ∅.
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The latter has also been proposed for other reasons in (Lawvere, 1991)
as geometric in nature with ∂a = a ∩ ā a kind of boundary of a. This
then requires both effects or quantum-and-gravity for the symmetry to
be maintained. This suggests the next level of our duality programme:

Can we extend quantum differential geometry to Heyting and
coHeyting algebras and thereby extend the negation duality to
a diffeomorphism?

The problem is that a Heyting algebra has both a ‘meet’ product
∩ and a ‘join’ ∪ but the latter does not in general provide an addition
rule and does not play well with negation in order to be able to define
a more suitable ⊕ over which ∩ distributes, i.e. we do not in general
have the basics for an actual algebra in the sense of a ring (before
even considering a field). I do not know the answer, but I would like
to suggest an approach. In fact, both Boolean algebras P (X) and
Heyting algebras (and a lot more) are examples of preorders (P,≤) by
which we mean an extended directed graph (adding in all self-arrows)
which is closed under composition of arrows (here a ≤ b corresponds
to an arrow a → b and in the Boolean case is just subset inclusion).
Both cases actually have rather more structure, namely min and max
elements 0, 1 (the empty set and the whole set in the Boolean case),
unital tensor product ⊗ (the ∩) and an ‘internal hom’ hom leading
to a ‘dual’ ā = hom(a, 0) (the negation) and making the preorder
closed symmetric monoidal in the sense of (Fong and Spivak, 2019)
(this is a baby closed symmetric monoidal category in the sense that
there is at most one morphism between any two objects). Abstractly,
hom is a binary operation characterised by a ⊗ b ≤ c if and only if
a ≤ hom(b, c), which you can check is true in the Boolean case with
hom(b, c) = b̄∪c (and its existence is a definition in the Heyting case).
In this sense, de Morgan duality has a similar conceptual flavour to



228 Shahn Majid

vector space duality in the tensor category of vector spaces, which is
in the right direction towards connecting it with observable-state or
Hopf algebra duality (Majid, 2014).

Next, instead of working directly with the Boolean or Heyting
algebra P as our ‘algebra of functions’, we work now with functionals,
i.e. the algebra A = C(P ) of functions on P . As P being a preorder
has a directed graph structure, we have

dΦ =
∑
a≤b

(Φ(b)− Φ(a))ωa≤b

for all functionals Φ ∈ C(P ) as a graph calculus on P . The Boolean
or Heyting negation as a set map P → P induces an algebra map
on C(P ) and this again is differentiable. We do not directly see the
‘manifold’ structure on X in the Boolean case where P = P (X) and
X itself has a directed graph with arrow set Arr. However, we can
similarly look at functionals of the differentials on X understood
now as functions on P (Arr). We therefore have the ingredients for
some form of variational calculus for functionals of functions on X
and their derivatives, in which the graph differentials on X enter,
much as quantum field theory on the space of functions on a manifold
still captures information about the manifold. When P is now some
Heyting algebra or indeed any preorder, we can look for similar
structures at the level of C(P ) with a calculus on P handled implicitly.
Given the importance of Heyting algebras and topos theory in physics
(see e.g. Döring and Isham, 2011) it should be useful to explore their
quantum Riemannian geometry, extending what should be achievable
in the Boolean case, even if we have to handle it implicitly in terms
of functionals. What may emerge is something like working over an
algebra but in terms of ∪ for addition, or some kind of ⊕ but with
weakened distributivity. Some ideas as to the latter were previously in
(Majid, 2014, Sec. 7).
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Heyting algebras provide the link up with probability as fol-
lows. We consider, as we did in Section 3, functions on X now
with values in [0, 1], i.e. probabilities. [0, 1] itself is a Heyting al-
gebra and C(X, [0, 1]) inherits its features pointwise, including a
preorder (where f ≤ g if f(x) ≤ g(x) for all x ∈ X), dis-
tributive, commutative and associative meet and join operations
(f ∪ g)(x) = max(f(x), g(x)) and (f ∩ g)(x) = min(f(x), g(x))

as well as an internal hom hom(f, g)(x) = 1 wherever f(x) ≤ g(x),
and g(x) at other points. The negation hom(f, 0) here is 1 at the ze-
ros of f and otherwise 0, which still interchanges ∪ and ∩ as for de
Morgan duality but which loses information and hence is not a proper
duality (indeed, double negation is not the identity except on the
Boolean subalgebra with values in {0, 1}). By contrast, we observe
that there is a different complementation which does square to the
identity,

(16) f̄(x) = 1− f(x), ∀x ∈ X,

and which again still interchanges ∩,∪ as expected for de Morgan
duality. It sends high probability to low probability in the same spirit as
discussed in the Boolean case (as well as in the spirit of the prophetic
work of the English satirist Douglas Adams). Moreover, we can still
take the preorder ‘field theory’ point of view and do differential
geometry and perhaps variational calculus on A = C(C(X, [0, 1]))
as above, but for the geometry of C(X, [0, 1]) itself, we again do not
have an algebra due to lack of a proper addition.

In fact, [0, 1] and C(X, [0, 1]) have another product which is the
more obvious one given by the usual product in [0, 1] as real numbers
and the ordinary pointwise product fg of functions with values in
[0, 1]. We can then generate its ‘de Morgan dual’ addition via the
complementation (16) as a new operation which we denote f ⊕ g =
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1−(1−f)(1−g) = f+g−fg in the spirit of (Majid, 2020a) for the F2

case. This is associative and has a zero but one has f(g⊕h) ≤ fg⊕fh
rather than full distributivity, so this pair of operations again does not
quite give an algebra. This product in R again makes both [0, 1] and
C(X, [0, 1]) closed symmetric monoidal preorders, but different from
our previous ones using ∩. The internal hom in [0, 1] is hom(p, q) = 1

if p ≤ q else q/p and similarly for functions hom(f, g)(x) = 1 at
points where f(x) ≤ g(x), and g(x)/f(x) at other points. In fact the
negation hom( , 0) here is the same as before (but the internal hom’s
in general are different).

All four binary operations on C(X, [0, 1]) remain tightly related
and we can consider the usual pointwise fg product along with f ∪
g given by the pointwise maximum. This has distributivity f(g ∪
h) = (fg) ∪ (fh) but, as mentioned, ∪ is not an addition law. On
the other hand, if we now replace probabilities in [0, 1] by minus
their logarithm as we did in Section 3 in discussing geodesic paths,
then we equivalently have functions on X with values in R≥0 with
pointwise addition and minimum, i.e. valued in the tropical version
of R. This point of view has, for example, applications in statistical
inference (Pachter and Sturmfels, 2004). So one may possibly garner
ideas for differential geometry on X itself from tropical algebraic
geometry. From probability functions to positive linear functionals on
noncommutative algebras is a further but well-known step. In this way,
we have sketched a path from Boolean algebras or logic to probability
to full quantum geometry over C, with some kind of generalised de
Morgan duality playing a pivotal role.

Finally, it should be mentioned that at the time of (Majid, 1991),
such duality ideas motivated the view that quantum gravity needs
geometry that is at the same time quantum or noncommutative, with
the duality realised slightly differently in concrete ‘toy models’ (Ma-
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jid, 1988) as observer-observed/representation-theoretic Hopf algebra
duality. The bicrossproduct quantum groups associated to Lie group
factorisations emerging from this, as well as the Drinfeld-Jimbo one
q-deforming complex simple Lie groups, contributed to a concrete
‘constructive’ approach to such quantum Riemannian geometry and
included the first convincing model (Majid and Ruegg, 1994) of quan-
tum spacetime with quantum symmetry. These ideas are also tied up
with quantum group Fourier transform and in physical terms with
‘Born reciprocity’ and were at the root of my proposal back in (Majid,
1988; 1991) as well in later works (Majid, 2012; 2015; 2014; 2018).
Although now somewhat established, the deepest aspect of this duality
– swapping observables and states – remains unexplored and should
relate to issues of measurement, probability and logic much as above,
for example to the entropic arrow of time (Majid, 1993). How exactly
it relates to a duality growing out of de Morgan duality remains a topic
for further thought, albeit the notion of bi-Heyting algebra (Reyes
and Zolfaghari, 1996) could be a step in that direction.

6. Concluding remarks

The main new results of the paper are our quantum geometric view of
Markov processes and the new concept of an underlying ‘Schrödinger
process’ in Section 3. We conclude with some comments on these.

Our first comment is that it could potentially be interesting to
extend the graph calculus used here to quivers (where there can be
self-arrows and multiple arrows between vertices). We have already
seen the need for self-arrows but now we can go one step further to
multiple arrows. One still has a differential calculus in the sense of
part of a DGA but now not all 1-forms need be sums of elements
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of the form adb (Majid and Tao, 2019). One can still do quantum
Riemannian geometry but now a metric is not a number on each
edge but a matrix (Majid and Tao, 2019). In the Markov case, we
could imagine a completely positive matrix, though this remains to
be established. The goal would be to generalise Markov processes
to allow different flavours of transition e.g. due to different types
of processes between vertices. We also note (Pachter and Sturmfels,
2004) concerning the use of graphs with arrows labelled by linear
forms to describe statistical models. Moreover, transitively closed
extended graphs (i.e., preorders) are baby versions of categories and
one could ask if differential geometry could generalise further to
categories in the spirit of Section 5.

Our second comment concerns the notion of geodesics. In non-
commutative geometry, one does not have points, so nor does one
have geodesics as paths. Instead we have to work directly with func-
tions and our first thought might be probability density functions.
However, quantum Riemannian geometry in the constructive form
(Beggs and Majid, 2020) is formulated in a linear setting so one is
led to ‘amplitudes’ ψ in a Hilbert space evolving in time and prob-
ability density f = |ψ|2. This was the motivation behind (Beggs,
2020; Beggs and Majid, 2019) and indeed quantum mechanics seems
to be tightly linked with this point of view. This suggests that the
philosophy of quantum mechanics, the measurement problem and so
forth might be clearer as geodesic flow in quantum geometry. This,
and more generally the role of quantum geometry (which is about
extending macroscopic concepts to the quantum level) in the nature
of measurement are topics for further study.

Indeed, the concrete result in the present paper is that if one goes
further and looks at discrete-time Schrödinger processes in discrete
quantum geometry, then coming out of the discreteness is a correction
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to the familiar equation ḟ = −∇ · J in usual quantum mechanics, in
which there is an extra Markov process induced on f . This has more
of a classical flavour and could play a role in measurement collapse.
Such finite processes should also be of interest in quantum computing,
where finite-dimensional unitary matrices are ‘gates’ and we have
shown how a 1-parameter family of these naturally arises quantum
geometrically.
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Abstract
This is an overview article that contains the discussion of the con-
nection between information and physics at the elementary level.
We present a derivation of Landauer’s bound for heat emission dur-
ing irreversible logical operation. In this computation the Szilard’s
version of Maxwell’s demon paradox is used as a model to design
thermodynamic implementation of a single bit of computer memory.
Landauer’s principle also motivates the discussion on the practical and
emergent nature of the information. Apart from physics, the principle
has implications in philosophy.
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Landauer’s principle, entropy, the second law of thermodynamics,
memory, information.

1. Introduction

Our civilization is based on information and creates it at a rapid
rate. The common understanding of ’information’ is related to:
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• Representation using binary notation (for instance), i.e. two
values/bits defined as 0 and 1, associated with ’true’ and ’false’,
which have their own logical operations. In this approach, infor-
mation represents a sequence of answers for binary questions
(Reza, 1994). This approach is adopted in current computer
systems.

• Boolean algebras (Reza, 1994). These are mathematical de-
scriptions of logic (and information) mentioned in the previous
point.

• Statistical description of information in the context of its effec-
tive encoding by the use of Shannon’s information (or coding)
theory (Reza, 1994). This approach is connected with statistics
and a long sequence of bits.

The first question is therefore about the term ’information’. In
general, the sequence of bits (e.g. 0101100101) is useless unless the
context in which it is produced is provided. In other words, a sequence
of bits is a sequence of ’true/false’ answers to specific questions. If
they are ’not-overlapping’, then they increase our knowledge of the
nature of the subject being examined. For instance, for a question
about a particular object, we can prepare the following sequence: Is it
round?, Is it green?, and so forth. Each question that is substantially
different from the previous yields an answer that provides us with
additional knowledge about the object. This is how we gather ’infor-
mation’ about the world. The representation is a way how we encode
this knowledge.

Summarizing, we say that information is knowledge (sequence
of answers for substantially different questions) about some objects
or phenomena. It is represented by (encoded in) a sequence of letters
from some alphabet. Then it can be analyzed and processed in terms
of, e.g., statistical analysis or Boolean algebra. Often in literature both
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of these notions are merged (Reza, 1994) or the term information is
related to its representation and processing without its semantic. Both
these concepts are abstract, in the sense that they are not related to
any physical phenomenon.

Modern computer systems exclusively use a binary representation
of information. However, if one considers arbitrary base b > 1 for
representation of numbers, then according to Shannon’s theory (Reza,
1994), the information per digit is described by lnb

b . This function has
its maximum at b = e = 2.7 . . ., that is, the base of natural logarithms
(Napier’s or Euler’s number). This is an irrational number and its
use as a base is difficult to achieve, although not impossible (Hayes,
2001). This fact has also motivated the design of computer systems
based on trit (b = 3), which is closer to optimal coding base e than to
the binary base (b = 2). Due to their more complicated construction,
such systems are not common. However, this example shows that the
encoding we use to collect information is the second-close to optimal.

The next question concerns the nature of the information. Is it
an abstract entity, or does some physical quantity represent it? Rolf
Landauer (1961) first highlighted the connection between the abstract
world of information presented above and its physics representation.
It was later popularized by Charles H. Bennett (1973), who also
proposed the application of Landauer’s principle to resolve the long-
lasting paradox of Maxwell’s demon (Bennett, 1987).

The principle states that during irreversible (i.e. non-bijective)
computational processes, heat is emitted in the memory. The bound
for the emitted heat is given by Landauer’s bound:

(1) QL = kBT ln 2,

per bit, where T is the temperature at which system operates and
kB = 1.380649 × 10−23 J

K is the Boltzmann constant. Due to the
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small value of kB , this heat does not generate overheating in mod-
ern computing systems. This principle states that operations on a
physical representation of information produce physical/measurable
consequences.

Landauer’s principle has recently undergone heavy testing (Bérut
et al., 2012), including recent tests in quantum systems (Yan et al.,
2018). It has also been theoretically investigated (Ladyman et al.,
2007; Sagawa, 2014; Piechocinska, 2000; Still, 2020; Kycia, 2018;
Kycia, 2019) from different viewpoints. Moreover, an application
to multivalued logic has been proposed (Bormashenko, 2019; Kycia
and Niemczynowicz, 2020). This raises questions about the physical-
ity of information: at which level is Landauer’s heat expelled and how
it is associated with the notion of information?

In this paper we present the ideas behind Landauer’s principle
and its connection with Maxwell’s demon paradox on the elementary
level. We also use some of our recent results from (Kycia and Niem-
czynowicz, 2020) that contain a general method of constructing a
higher base thermodynamic analog of memory and its connection
with category theory, namely, the Galois connection. Therefore, the
paper is a review and not original research. We will treat the subject
elementarily, to explain Landauer’s principle to the broad community
of philosophers, physicists, and a general audience. We will also trace
different concepts related to information: an abstract entity including
its representation in terms of a sequence of letters of the alphabet, e.g.,
bits, and its representation in the configuration of a physical system.

The paper is organized as follows. In the next section we describe
a simple version of Maxwell’s demon paradox attributed to Szilard
(1929) and its resolution by the Landauer’s principle. We then use
this model to construct a single bit of thermodynamic version of
computer memory. This model explains a subtle connection between
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information and its physical realization. This will be simplified here,
with a more pedagogical version of the results presented in (Kycia
and Niemczynowicz, 2020). Finally, we comment on the relationship
between abstract information and its representation using physical
systems.

2. Maxwell’s demon

Maxwell’s demon is a common paradox of thermodynamics that was
solved only recently utilizing Landauer’s principle (Landauer, 1961;
Bennett, 1973; Feynman and Hey, 2000) which is currently accepted
and verified experimentally solution as explained in the Introduction.
The physics and philosophy literature on this subject is currently vast,
and the good starting point that merges both disciplines is (Ladyman
et al., 2007).

In this section we present a simple version of Szilard’s experiment
(Szilard, 1929; Feynman and Hey, 2000), which uses a single particle
of the ideal gas, with the following equation of state (for the particle)
(Kycia, 2019; Lychagin, 2019; Schneider, 2019)

(2) pV = kBT,

where p is the pressure and V is the available volume for the particle.
In the experiment, all elements are ’idealized’ in the sense that there
are no energy losses for friction.

Imagine that the particle of the ideal gas is inside the box of
temperature T . The particle is in thermal equilibrium with the walls
of the box. We construct a thermodynamic cycle that extracts useful
work from the system. Maxwell’s demon is a new system that ensures
the proper course of the cycle.
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Figure 1: The box split in half, with the unknown location of a particle.

Figure 2: In this case the particle is located in the left chamber of the box.

In the first step of the cycle, insert a wall inside the box, dividing
it into two chambers of equal volume V

2 . At this stage, the demon that
guides the machine cycle does not know in which part of the box the
particle can be found. The situation is presented in Fig. 1.

To start extracting useful work, the demon must locate the particle,
or in other words, gain and store information about particle location.
The situation after localizing the particle is presented in Fig. 2.

In the next step, the border between the chambers become mov-
able. Energy is extracted when the gas is decompressed isothermally.
This decompression is a reversible thermodynamic process and the
work done by the particle is given by:

(3) W = kBT

∫ V

V/2

= kBT ln 2.

The situation is presented in Fig. 3.
The final part of the cycle is the restart. The demon takes the

border out of the box, moves it and then re-insert it again in the
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Figure 3: Energy extraction in the isothermal expansion of a single particle
of the ideal gas.

middle. We return here to the situation from Fig. 1. At this stage,
information about the particle location is not needed, so the demon
must delete it to return the whole system (box and demon) to the
initial state for another round of the cycle. Therefore, we now have
the same state as at the beginning of the previous turn.

This situation can be analyzed in terms of the second law of
thermodynamics and entropy S. The second law of thermodynamics
says that the change of total entropy (system and environment) must
be non-decreasing.

In the case above, in the cycle, according to the conservation of
energy (the first law of thermodynamics), the heat from the environ-
ment (the thermal bath of the particle) is extracted and used to make
work W . Therefore, the deficiency of heat is Q = W = kBT ln(2).
Given that the balance is negative and the system is held at a constant
temperature, the entropy change in the cycle is

(4) ∆S = −Q
T

= −kB ln(2) < 0.

This contradicts the second law (it must be ∆S ≥ 0).
To solve this apparent contradiction, Bennett (1987) has suggested

that during the demon’s erasure of the bit of information regarding
particle location (say 0–the particle in the left chamber, 1–the particle
in the right chamber) the heat of value Qe is expelled. This heat is no
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less than Landauer’s bound (1), that is Qe ≥ QL. This assumption
corrects the balance of entropy:

(5) ∆S =
Qe
T
− Q

T
≥ kB ln(2)− kB ln(2) = 0.

Bennett’s explanation solves the long-standing paradox by em-
ploying Landauer’s idea. It is interesting to note that the paradox
remained unresolved until the 1970s. Moreover, its resolution is based
on the idea of information, computing, and memory developed in the
twentieth century and therefore not known to the fathers of thermo-
dynamics. The solution can almost be regarded as manifest in the
works of Szilard (1929) if his experiment is interpreted as a model
for computer memory. This reinterpretation of Szilard’s results is
presented in the next section, which provides a more in-depth insight
into the connection between information and its implementation.

3. Memory

Szilard’s gedanken experiment presented in the previous section can
be used to construct a thermodynamic model of computer memory.
We consider here the simplest case; a more detailed presentation for
general memory for multivalued logic is given in (Kycia and Niem-
czynowicz, 2020).

The implementation of a single bit thermodynamic memory is
presented in Fig. 4.

State a is an inner state of memory that does not represent any
logical value. It is used to implement all logical operations (not neces-
sarily those that swap 0 and 1). This assumption is consistent with the
previous discussion of Szilard’s model and its reverse.
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Figure 4: Implementation of memory using the thermodynamic model of
the reversed Szilard’s model of Maxwell’s demon. State a is not associated
with logical value: it is an undetermined internal state of the memory, which
can be associated with 0 at the logical level. State b represents 0, and state
c represents 1. Maps f and g, associating logical values with their physical
implementation, are selected in such a way to preserve the order indicated
by black lines representing transitions between states or ordering in Boolean
algebra, that is, logic. This is a reminiscence of the Galois connection (Fong
and Spivak, 2019; Smith, 2018; Kycia, 2018) that usually occurs where there
is a system that contains an abstract level and its implementation.

We can now proceed to a detailed description of the types of
operations. At the level of logic, we have two types of operations on
this memory:

• Reversible: operations that have inverses, i.e., those that are bi-
jections, for instance, a NOT gate whose function is involutive:
0↔ 1.

• Irreversible: operations that do not have inverse, for instance
the assignment of some value that ’forgets’ the previous value:
(0→ 1, 1→ 1).

At the level of thermodynamics, we have a similar convention.
However, the definition is different:
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Possibilities
B

reversible

B

irreversible

A reversible YES YES

A irreversible NO YES

Table 1: Systems A is implemented on B.

• Reversible: realized by reversible thermodynamic processes, i.e.
processes that can be reversed, or equivalently, the process that
combined into a cycle with its inverse has vanishing entropy
change ∆S = 0.

• Irreversible: realized by irreversible thermodynamic processes,
i.e. if we perform this operation and then return (along any
reversible process) to the initial state, then in the cycle ∆S > 0.

As highlighted in (Ladyman et al., 2007), the main idea behind
Landauer’s principle is the association of operations at the level of
logic and their physical implementation in the form presented in
Tab. 1; in our case, A is the logical system and B is its memory
implementation.

To understand this association, we provide some examples of
logical operations and their physical implementations.

To assign some initial value to memory state, let us start from state
a and perform isothermal compression to b. This initial preparation
expels (stores) the heat Q = kBT ln(2) to(in) the environment and
sets the initial logical state to 0.

Consider the reversible NOT operation. According to Tab. 1, this
can be realized in two inequivalent thermodynamically ways at the
physical level:
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1. Reversible thermodynamic operation: isothermal expansion
b → a and then isothermal compression a → c. The com-
posed operation is thermodynamically reversible and no heat is
expelled to the environment or converted to work.

2. Irreversible thermodynamic operation: we take the middle bor-
der out of the box, which generates free adiabatic decompres-
sion of the gas (particle) b → a. Next, reversible isothermal
compression a→ c is made. When the first step is performed,
we lose ’access’ to the heat initially stored in 0 state. This heat
cannot be regained/reused and therefore must be treated as
Landauer’s heat.

Consider now the irreversible logical operation of setting 1 start-
ing from 0. According to Tab. 1, this must be realized by an irre-
versible thermodynamic operation and hence it is the same as the
operation from the second point above. Therefore, Landauer’s heat is
also expelled in this case.

This example is also proof that Landauer’s principle is equivalent
(at least for these examples) to the association from Tab. 1 between
operations on logical and thermodynamic states.

The presentation in this section was elementary, intending to be
an introduction to the multivalued logic approach (Kycia and Niem-
czynowicz, 2020; Bormashenko, 2019), category theory formulation
of this principle (Kycia, 2018; Kycia, 2019), mentioned briefly above,
and its understanding in more fundamental level (Ladyman et al.,
2007). We also emphasize that the principle can be thoroughly under-
stood only at the level of statistical physics (Sagawa, 2014; Piechocin-
ska, 2000), and equilibrium thermodynamics used above is only its
limiting case.

In the following conclusion section we briefly discuss the nature
of information.
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4. Discussion

The thermodynamic realization of a bit of information is a simple
model that presents how Landauer’s heat is generated for irreversible
operations. In this model, energy is initially stored in the environment
by setting some starting value (0 or 1) in the memory. An irreversible
operation then makes it impossible to reuse/regain this heat to perform
work and thus extract energy from the memory to gain the initially
’invested’ energy. In this interpretation, a bit labels the state of a sys-
tem that contains energy that can be accessed and (re)used. Reversible
operations are designed to extract this energy, whereas irreversible
ones lose it. Therefore, according to the laws of thermodynamics, for
irreversible operation, heat is expelled.

Abstracting even more, the information is stored in some sort of
energy configuration of the physical system. From the mathematical
viewpoint, there is an abstract notion of information (bits, Boolean
algebras), but ultimately information must be represented by certain
physical states, allowing it to interact with the physical world. This
storing process of information forms a connection between its abstract
notion and the physical world.

This also has some practical consequences to philosophy. The
’sacrum’ (abstraction) cannot be separated from ’profane’ (realization).
Abstract concepts (encoded as some form of information) must always
be stored in some physical configuration of matter/energy. Information
is a type of emergent concept or a new complexity built on top of
physical constructs and our ability to manipulate energy and matter.
This is a highly pragmatic approach.

This perspective shows that information, although immaterial con-
cept, exists in the Universe as its encoding/representation in physical
content of matter and energy. Their properties can be abstracted, how-
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ever, we always deal and interact with some of its representation. The
connection between abstract notion and its multiple (physical) repre-
sentations is also reflected in the Galois connection (Smith, 2018)—a
process of abstraction—which can be seen as a modern allegory of
Plato’s cave—a projection of mathematical (ideal) entity to the con-
crete realization (shadow on the cave wall).

5. Conclusion

We presented an overview of the basic facts from the thermodynamics
of Maxwell’s demon, its model by Szilard and the resolution of this
paradox by Landauer. This motivated us to consider the correspon-
dence between information and its physical representation. The aim
was to introduce a broad audience to the basics of this subject and
provide some references that can be used for more in-depth studies.
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Abstract
The interaction between syntax (formal language) and its semantics
(meanings of language) is one which has been well studied in cat-
egorical logic. The results of this particular study are employed to
understand how the brain is able to create meanings. To emphasize
the toy character of the proposed model, we prefer to speak of the
homunculus brain rather than the brain per se. The homunculus brain
consists of neurons, each of which is modeled by a category, and
axons between neurons, which are modeled by functors between the
corresponding neuron-categories. Each neuron (category) has its own
program enabling its working, i.e. a theory of this neuron. In analogy
to what is known from categorical logic, we postulate the existence of
a pair of adjoint functors, called Lang and Syn, from a category, now
called BRAIN, of categories, to a category, now called MIND, of theo-
ries. Our homunculus is a kind of “mathematical robot”, the neuronal
architecture of which is not important. Its only aim is to provide us
with the opportunity to study how such a simple brain-like structure
could “create meanings” and perform abstraction operations out of its
purely syntactic program. The pair of adjoint functors Lang and Syn
model the mutual dependencies between the syntactical structure of a
given theory of MIND and the internal logic of its semantics given
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by a category of BRAIN. In this way, a formal language (syntax) and
its meanings (semantics) are interwoven with each other in a manner
corresponding to the adjointness of the functors Lang and Syn. Higher
cognitive functions of abstraction and realization of concepts are also
modelled by a corresponding pair of adjoint functors. The categories
BRAIN and MIND interact with each other with their entire struc-
tures and, at the same time, these very structures are shaped by this
interaction.

Keywords
categorical logic, syntax-semantics, mind-brain.

1. Introduction: On the Computer Screen

We were preparing a paper for publication. A phase portrait
was nicely displayed on the computer screen. The network of

trajectories represented a class of solutions to the equation we were
interested in. At some points, called critical points, certain trajectories
crossed each other. These points were important for our analysis.
Some of the diagrams we worked with appeared later as figures in
our publication (Woszczyna and Heller, 1990). The figures had to be
explained, so we decided to attach appropriate labels to some of the
critical points. We attached the label “stable saddle” to one of them.
No problem. Then we proceeded to attach the label “unstable saddle”
to another one. But the label jumped up. We tried to fix it up, but it
jumped down. Then we started laughing. After all, it is an unstable
point!
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Let us try to understand the situation. We were investigating
an equation that (virtually) contains in itself its space of solutions
(irrespectively of whether we explicitly know them or not). Through
the suitable computer program and some “electronic circuits”, which
are activated by the program, this space of solutions is mapped into
the phase portrait displayed on the computer screen. The diagram we
see on the screen is certainly something more than just a picture. It
does not simply show stable and unstable critical points; it also does
what the abstract equation orders its solutions to do (labels jump up
and down at instabilities).

Let us go a step forward. In fact, the phase portrait on the screen is
a substitute of the world. For suppose that our equation “describes” (or
better—models) a mechanical system (e.g., a pendulum or oscillator).1

Then the unstable critical points of our equation correspond to physical
situations in which the considered mechanical system behaves in an
unstable way. We thus have, on the one hand, an equation (or a
set of equations) or, more broadly, a mathematical theory and, on
the other hand, a domain (or an aspect) of the physical world of
which the considered mathematical theory is a model. Between the
mathematical model and the domain (or aspect) of the physical world
there is a mysterious correspondence—a correspondence in the root-
meaning of this word: both sides co-respond to each other. It is an
active correspondence, and the activity goes both ways: it looks as if
the domain of the world informed the theory about its own internal
structure, and the theory answered by prescribing what the domain
should do. And the domain does it. The equations prescribe what the
world should do, and the world executes this. The equations and the
world are coupled with each other and act in unison.

1 The equations we considered in our publication referred to a cosmological situation.
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And the screen on my computer? It is a part of the world. The
program we have constructed reads the structure of the equations
and executes what the equations tell it. And because of the coupling
between the equations and the world, the computer does, in miniature,
what does the world on its own scale. This is the reason why computers
are so effective in our reading of the structure of the world.

There is another domain in which a formal structure reveals its
effective power and produces real effects. Such processes occur in
the brain. The formal structure in question consists of electric signals
propagating along nerve fibres between neurons across synapses, and
the world of meanings should be regarded as a product of this activity.
The interaction seems to go both ways: the “language of neurons”
(what happens in the brain) produces the meanings related to this
language (in the mind), and the meanings somehow influence the
architecture of neurons.

It seems that in both these cases (mathematical laws and their
effects in the real world, and the brain–mind interactions) we meet
two instances of the same working of logic where syntax (a formal
structure), by effectively interacting with its semantics, produces real
effects. This kind of interaction, although kept strictly on the level of
logic (i.e. with no reference to processes in the real world), is well
known in the categorical logic. In the present paper, we attempt to
employ these achievements of categorical logic to try to understand
the brain–mind interaction.

The traditional terminology of brain and mind (irrespective of
current trends in cognitive sciences to get rid of their conceptual
load) seems especially well adapted to the present context in which
general ideas are more important than structural details. Moreover, to
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avoid too hasty associations with the human brain and to emphasize
the toy character of the proposed model, we prefer to speak of the
“homunculus brain” rather than just of brain.

The action of our argument develops along the following lines.
Section 2 is a reminder on formal language, its syntax and semantics.
Sections 3 and 4 briefly review those parts of categorical logic that
refer to these concepts. Every category, call it C, has its internal logic,
and if this logic is sufficiently rich, the category provides semantics
for a certain formal theory T . Moreover, there exists a pair of adjoint
functors, called Lang and Syn, from a category, called CATEGORIES,
of categories belonging to a certain class (for instance, coherent cate-
gories) to a category, called THEORIES, of theories and vice versa,
which describe mutual dependencies between the syntactical structure
of T and the internal logic of its semantics given by C. This is de-
scribed in section 3. In this way, syntax and semantics are interwoven
with each other in a manner corresponding to the adjointness of the
functors Lang and Syn. This is explored in section 4. In section 5, we
consider a deep categorical duality between the syntactic category of
a theory and its individual models and suggest a functional interpreta-
tion in terms of abstraction and realization of concepts, in anticipation
of the cognitive interpretation to be introduced next. In section 6, the
category CATEGORIES becomes the category BRAIN. It constitutes
a simple model of a homunculus’ brain. Objects of this category are
categories (belonging to a certain class); every such category models a
neuron. Morphisms of this category model signals propagating along
nerve fibres between neurons. The category THEORIES becomes the
category MIND. Its objects are “theories of neurons”; more precisely,
if C ∈ BRAIN, then its “theory” is Lang(C) in MIND. Morphisms of
this category are functors between the corresponding syntactic theo-
ries; more precisely, if T1, T2 ∈MIND, then the morphism between
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them is Syn(T1)→ Syn(T2). The pair of adjoint functors Lang and
Syn model the interaction between the syntax of “theories” and their
semantics, i.e. the network of neurons. The categories BRAIN and
MIND are indeed somehow related to what their names refer to, at
least as far as homunculus’ brain and mind are concerned.

Following the seminal paper of McCulloch and Pitts, published as
early as in 1943, which proposed using classical logic to model neural
processes in the brain, there have been so many papers developing
and modifying (with various logical systems) this idea, that to quote
even a sample of them would be immaterial (for a relatively recent
state of art see a short review Koch, 1997). A. Ehresmann claims that
it was R. Rosen who was the first to employ category theory to model
biological systems. A series of works followed (a non-representative
sample: (Gómez and Sanz, 2009; Healy and Caudell, 2006; Mizraji
and Lin, 2011; Tsuchiya, Taguchi and Saigo, 2016)) proposing the
use of various parts of category theory to model different aspects
of the brain activity. In particular, adjoint functors were suggested
to model “a range of universal-selectionist mechanisms” (Ellerman,
2015). However, we have not been able to find anything similar to
modeling the interaction between brain’s language and its meaning
anywhere.

2. Syntax and Semantics

In linguistics, syntax and semantics are regarded as parts of semiotics,
the study of signs. Syntax studies relations between signs, and seman-
tics relations between signs and what the signs refer to.2 Syntactic

2 Sometimes one also distinguishes pragmatics which studies relations between signs
and their users.
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properties are attributed to linguistic expressions entirely with respect
to their shape (or form). Semantics, on the other hand, endows them
with meaning by referring signs to what they signify. Logic adapts
these ideas to its own needs. Since it is a formal science, the signs it
considers should be elements of a formal language, and they cannot
refer to anything external. Halvorson puts it, “But a formal language
is really not a language at all, since nobody reads or writes in a formal
language. Indeed, one of the primary features of these so-called formal
languages is that the symbols don’t have any meaning” (Halvorson,
2016). This is why the meaning should be “artificially” constructed
for them. The idea of how this should be done can best be seen in
Tarski’s prototype of this procedure (Tarski, 1933). If a sentence s,
the truth of which we want to define, belongs to a language L then
the definition of s should be formulated in a metalanguage M with
respect to the language L. And the metalanguage M should contain
a copy of s so that anything one can say with the help of s in L, can
also be said in M . The definition of “True” should be of the form

For all x, True(x) if and only if φ(x)

with the condition that “True” does not occur in φ. Here x stands for
the copy of the sentence s in the metalanguage L, and φ(x) describes,
also in M , the state of affairs of which the sentence s in L reports (for
more details see Hodges, 2018; Sher, 1999). A metalinguistic copy
of s could also be expressed as “s” (taken in quotes). In Tarski’s own
example:

“It snows” is true iff it snows.

For pedagogical reasons, this example is taken from colloquial lan-
guage, but strictly speaking Tarski’s definition refers to formal lan-
guages. The formal language L has its own syntax (since it is a formal
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language), but is lacking its semantic reference. As we have seen,
such a reference had to be constructed for it with the help of the
metalanguage M .

Now, the idea is to improve the situation by looking for such a
conceptual context in which a semantics for a given theory would
arise in a more natural (or even spontaneous) way.

3. Categorical Semantics

To do so we must first define precisely what we mean by language.
Since the definition must be precise, let us choose as an example the
language of mathematics based on standard first order logic (which
is enough for most of the usual mathematics). Many other languages
may be formalized in a similar way. In such a language we distinguish:

• constants: 0, 1, 2, . . . , a, b, c, . . . , and variables: x, y, z, . . . ,
which can be combined by primitive operations to give
• terms, for example: x+ y, x3, . . . which, in turn, can be com-

bined, with the help of primitive relations, such as =, <,≤, . . . ,
to produce

• formulae, for example: x + y = z, x ≤ y, . . . which, in turn
can be combined, with the help of the usual logical connectives
and quantifiers, into

• more complicated formulae.

To make the language more flexible and more adapted for concrete
applications, we diversify its expressions into various types (called
also sorts). In mathematics, we might use different letters for natural



The homunculus brain and categorical logic 261

and real numbers, or different symbols for vectors an scalars. We say
that, in both cases, we are using a two-typed language. There may be
languages with as many types as is needed.

What we need is not so much a language, but rather a theory.
In mathematical logic theory is almost the same as language; it is a
formal language aimed at axiomatizing a certain class of sentences.
The concept of theory, as it is functioning in modern physics can, in
principle, be regarded as the special case of the logical concept of
theory, although in scientific practice theories are rarely formulated
with the full logical rigor.

Let then T be a theory expressed in a multi-type language. Such
a theory is defined as consisting of the following data:

1. A set of types {X1, X2, . . . , X, Y, . . . }.
2. A set of variables {x, y, z, . . . , x1, x2, x3, . . .} with a type as-

signed to each variable.
3. A set of function symbols with a type assigned to each domain

and codomain of every function symbol; for instance, to the
term x1 + x2, with the variable x1 of type X1 and the variable
x2 of type X2, there corresponds the function symbol f : X1×
X2 → Y , and the term f(x1, x2) = x1 + x2 is of type Y .

4. A set of relation symbols with a type assigned to each argument
of every relation symbol; for instance, to the formula x+y = z,
with the variable x of type X1, the variable y of type X2 and
the variable z of typeX3, there corresponds the relation symbol
R ⊆ X1 ×X2 ×X3, and R(x, y, z) is an atomic formula.

5. A set of logical symbols.
6. A set of axioms for a given theory built up from terms and

relation symbols with the help of logical connectives and quan-
tifiers, respecting types of all terms.
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This is, in fact, a purely syntactic definition of theory (for details see
Borceux, 1994, pp.344–348; Mac Lane and Moerdijk, 1992, pp.527–
530). Now, we want to create a semantics, i.e. a model, for a theory
T . This is done by constructing a category CT which will serve us as
such a model. The construction is almost obvious:

1. each type of T is an object of CT ,
2. for each function symbol f in T with types A and B as its

domain and codomain, correspondingly, f is a morphism from
the object A to the object B in CT ,3

3. variables are identity morphisms in CT ,
4. for each relation symbol R in T , its counterpart in CT is a

subobject in CT . Suppose ϕ is a subobject of an object A in
CT then, by analogy with the usual theory of sets, ϕ can be
thought of as a collection of all things of type A that verify ϕ.

This definition must be supplemented with all of the (first order) logic
which is used to express axioms in T (for details see nLab, 2017).
Roughly speaking, since formulae correspond to subobjects, and all
subobjects of a given object are partially ordered by inclusions (they
form a poset), the axioms can be expressed in terms of the order
relation on the subobject poset in the category CT . The category,
defined in this way, is appropriately called the categorical semantics
for a theory T .

We have thus created (almost automatically!) a domain (the cat-
egory CT ) the theory T refers to. The internal architecture of the
category CT exactly matches the logic involved in the theory T .

Let us also mention that, vice versa, having a (sufficiently rich)
category C ′, we can construct the formal theory T ′ the logic of which

3 Since f is now regarded as being in CT rather than in T , it should formally be
denoted by a different symbol such as [f ], but we omit such formalities for present
purposes.
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matches the internal architecture of the category C ′. This can be
done by reading the above definition of the categorical semantics
“backwards”, i.e. we regard objects of C ′ as types of T ′, identity
morphisms of C ′ as variables in T ′, etc. The theory T ′, reconstructed
in this way from the category C ′, is called internal logic of C. This
entire process can be regarded as a functor, called Lang, from a
category of categories, call it CATEGORIES, to a category of theories,
call it THEORIES,

Lang: CATEGORIES→ THEORIES.

For the time being this definition remains informal since neither
CATEGORIES nor THEORIES have been properly defined, but it
will be done below.

Let us start with a formal theory T . We now want to organize it
into a category Syn(T ), called the syntactic category of T . It is done
in the following way.

Let Γ be a collection of type assertions, i.e. a collection of rules
assigning a type to each term of a given theory, and Φ a collection
of all well-defined formulae of T . The pair (Γ,Φ) is called a context.
It is a formalization of what in ordinary language one means by this
term.

If T is a type theory, its syntactic category, Syn(T ), is defined as
follows. Its objects are contexts (Γ,Φ) and its morphisms (Γ,Φ)→
(∆,Ψ) are interpretations (or substitutions) of variables. The latter
means that for each type, prescribed by ∆, we must construct an
expression of this type out of data contained in Γ. In general, this is
done by substituting terms from Γ for variables in ∆. We must also
present, for each assumption required by ∆ (if there are any), a proof
of this assumption from the assumptions contained in Γ (for details
see Fu, 2019; nLab, 2020c).
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The category Syn(T ), constructed in this way, is also called a
category of contexts (for details see Fu, 2019; nLab, 2020b)).

Since from a theory T we have constructed the category Syn(T ),
we can have a functor,

Syn: THEORIES→ CATEGORIES

provided we define the categories THEORIES and CATEGORIES.
We do this in the next section.

4. Syntax–Semantics Interaction

Let us start with objects for both of these categories. It is obvious that
they will be categories and theories, respectively. To have workable
categories, one must restrict the class of theories as candidates of
being objects in THEORIES (and analogously for CATEGORIES).
The criterion one follows is the kind of logic that underlines a given
theory. It could be what logicians call: finite product logic, regular
logic, coherent logic, geometric logic, etc.4 For our further analysis it
is irrelevant which one will be chosen. However, for the sake of con-
creteness we may think about coherent logic. Roughly speaking, this
is a fragment of the first order logic which uses only the connectives
∧ and ∨, and the existential quantifier. Large parts of mathematics
can be formalised with the help of this logic. To this logic there corre-
spond coherent theories and coherent categories. They will constitute
objects of THEORIES and CATEGORIES, respectively. Morphisms
for CATEGORIES are obviously functors between corresponding cat-
egories; for instance coherent functors for coherent categories (nLab,

4 As it could be expected, the internal logic of the corresponding semantic category
will be of the corresponding kind, i.e. finite product logic, regular logic, etc. (nLab,
2017).
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2011). Let now T1 and T2 be objects in THEORIES. A morphism
T1 → T2 is a functor between their corresponding syntactic theories
Syn(T1)→ Syn(T2). Roughly speaking, this means that it is possible
to express (to interpret) T1 in terms of T2 (for details and discussion
see Halvorson and Tsementzis, 2017).5

As a side remark let us notice that by studying the category
THEORIES, we could learn “how individual theories sit within it, and
how theories are related to each other” (Halvorson and Tsementzis,
2017, p.413). This is nicely consonant with a newer trend in the
philosophy of science to investigate the so-called inter-theory relations
(Batterman, 2016; Rosaler, 2018).

A truly remarkable fact is that the functors Lang and Syn con-
stitute a pair of adjoint functors. Let us explain precisely what this
means.

Let us consider any pair of objects: C of CATEGORIES and T of
THEORIES. Adjoint functors serve to compare them. However, they
cannot be compared directly since they live in different categories.
Adjoint functors serve to move each of them to the correct category
so as to enable the comparison. Let us follow this process step by step
(Simmons, 2011, pp.148-153).

Let us first consider the object T which lives in THEORIES. We
want to compare it with the object C which lives in CATEGORIES.
We thus move C to THEORIES with the help of the functor Lang to
obtain the object Lang(C). We now make the comparison with the
help of a suitable morphism,

f : Lang(C)→ T

5 Strictly speaking, CATEGORIES is a 2-category (since its objects are categories and
morphisms are functors), and THEORIES is a 2-category, in this case, called also a
doctrine (nLab, 2020a).



266 Steve Awodey, Michael Heller

in THEORIES. We do the same starting with C in CATEGORIES and
T in THEORIES, and compare C with Syn(T ),

g : C → Syn(T )

in CATEGORIES. To complete the definition of adjunction we de-
mand that morphisms f and g should constitute a pair of bijections
which is natural both in C and T (see below).

The above definition can be put into a concise form

(1) THEORIES(Lang(C), T ) ∼= CATEGORIES(C,Syn(T )),

expressing an isomorphism between the right and left hand sides of
this formula that is natural in C and T . The latter condition says that
when C varies in CATEGORIES and T varies in THEORIES, the
isomorphism between morphisms Lang(C)→ T in THEORIES and
C → Syn(T ) in CATEGORIES vary in a way that is compatible with
the composition of morphisms in CATEGORIES and THEORIES,
correspondingly, and with the actions of Lang and Syn on both these
categories (see Awodey and Forssell, 2013; Leinster, 2014, pp.50-
51).6

We should notice that in the above definition, in fact, we not
only compare objects of two different categories, but rather categories
themselves (objects C and T are any pair of objects). Moreover, com-
paring two categories we are not so much interested in their objects,
but rather in morphisms between objects. This is clear from the fact
that at the end, we have identified those morphisms of two categories
that are pairwise naturally isomorphic among themselves.

6 For a full definition of adjoint functors see any textbook on category theory.
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As we can see, categorical logic does not simply create a seman-
tics for a given language, but shows that dependencies between them
go both ways: in a sense, syntax and semantics create each other. More
precisely, they condition each other through the adjointness relation.

5. Realization and Abstraction

There is another aspect of categorical logic that we shall make use of,
and it may be seen as a mathematical description of the processes of
abstraction and realization of concepts. The category Syn(T ) repre-
senting a theory T may be regarded as presenting a general concept,
of which the theory T is a particular syntactic description. For ex-
ample, there is a theory TGroup consisting of a single basic type X,
and function symbols ∗ : X ×X → X and (−)−1 : X → X and a
constant u : X, together with the usual equations for groups as its
axioms:

x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ u = x

u ∗ x = x

x ∗ x−1 = u

x−1 ∗ x = u

The syntactic category Syn(TGroup) then represents the general con-
cept of a group. This concept can also be represented by another



268 Steve Awodey, Michael Heller

theory T ′
Group with a different choice of basic equations, or even a

different choice of operations,7 as long as the resulting categories
Syn(TGroup) and Syn(T ′

Group) are equivalent.
A general concept may have many individual instances; an in-

stance of the concept of a group is, of course, just a particular group: a
set G of elements, equipped with functions interpreting the operations
of multiplication and inverse, and satisfying the group equations. A
logician would call such an instance a model of the theory of groups,
but we shall avoid this over-worked term and refer to it instead as a
realization of the theory of groups. A realization of a theory T in any
category C is essentially the same thing as a functor Syn(T )→ C that
preserves the relevant structure of the theory—in the case of groups,
the finite products X × X. (This is in fact the defining universal
property of the syntactic category Syn(T ).) The realizations in the
category SET, consisting of all sets and functions, are thus exactly
what we called the instances of the general concept of a group, namely
groups.

The standard category GROUP of all groups and their homo-
morphisms, as usually defined in abstract algebra, is then essentially
the same as the category of all such instances, that is, the category
REAL(Syn(TGroup),SET) of all SET realizations, i.e. (structure-
preserving) functors, where the morphisms are just natural transfor-
mations of such functors (that these correspond exactly to group
homomorphisms is not trivial). In this way, for any general concept
Syn(T ) corresponding to a theory T we can define the category of its
SET realizations,

REAL(T ) =df REAL(Syn(T ),SET),

7 For example there is an axiomatization of groups using a single ternary operation in
place of the two operations x ∗ y and x−1.
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which may be viewed as the category of instances of the concept
Syn(T ).

Now an amazing and mathematically deep fact emerges, which
can only be seen using the tools of categorical logic: from the category
REAL(T ) of all instances of the concept presented by T , one can ac-
tually recover the general concept Syn(T ). Indeed, for any structured
category R of the same kind as REAL(T ) (we will say a bit more
about the condition “of the same kind” below), one can consider all
of the continuous functors f : R → SET; these may be regarded as
“images” or “abstractions” of the (generalized) realizations in R. The
category of all such abstractions ABSTRACT(R,SET) (again, with
natural transformations as morphisms) may be called the abstract of
R, and written simply

ABSTRACT(R) =df ABSTRACT(R,SET).

A similar construction that the reader may know is the ring C(X) =

C(X,R) of continuous, real-valued functions on a space X . The note-
worthy fact that we mentioned above is this: if for R we take a
category REAL(T ) of realizations of a theory T , then the abstract of
REAL(T ), consisting of all “abstractions” REAL(T ) → SET, will
be the associated concept Syn(T ).8 Thus the abstraction of the real-
izations of a concept is the concept itself. We can even summarize this
briefly by saying that All concepts are abstract, since every concept
is the abstraction of its realizations. More generally, for any suitable
category R, the category ABSTRACT(R) of all continuous functors
f : R → SET (the “abstractions” ofR) is a general concept, of which
R is either the category of realizations, or an approximation thereof.

8 Under suitable assumptions, and up to the relevant notion of equivalence, of course;
see (Awodey, 2021) for the general theory.
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The general correspondence is given by a (contravariant!) adjunc-
tion between the functors of Realization and Abstraction which relate
these operations; schematically,

CONCEPTS

Realization

%%

INSTANCESop

Abstraction

dd

Here CONCEPTS is the category consisting of all “conceptual”
categories Syn(T ) and their (relative) “realizations”, i.e. functors
Syn(T ) → Syn(T ′), and the functor of Realization is defined by
taking realizations in SET,

Realization(Syn(T )) = REAL(Syn(T ),SET),

which we also called the category of “instances” of the concept.
And INSTANCES is the category consisting of all (generalizaed)

categories of instances R (such as the categories GROUP, RING,
etc.) with their “continuous” functors R → R′, and the functor of
Abstraction is defined by taking continuous functors into SET,

Abstraction(R) = ABSTRACT(R,SET),

which we called “abstractions” of the category R.
Let us consider a simple example! Propositional logic consists

of basic propositional variables x, y, z, . . . and constants ⊤,⊥, which
can be made into formulae using the usual propositional connectives
¬z , x ∧ y , x ∨ y , x⇒ z, and which are assumed to satisfy the usual
logical laws, such as x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) , ¬¬x = x, etc.
A theory T in this simplified case is just a set of propositional letters
V = {p1, p2, . . . , pn} (regarded as 0-ary relation symbols), and a list
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of propositional formulae A = {α1, α2, . . . , αm} built up from these
letters, as the axioms of the theory. There are no types, typed variables,
or function symbols (or rather, there is a single, implicit type 1), and
the logical symbols are just the propositional connectives.

The syntactic category Syn(T ), representing the “concept”, is
then the Boolean algebra F (V )/A obtained as the free Boolean alge-
bra F (V ) on the variables V as generators, quotiented by the filter
generated by the axioms A. This “concept” associated to the propo-
sitional theory T = (V,A) is independent of the particular syntactic
presentation (V,A). A realization of T is then a boolean homomor-
phism F (V )/A→ 2, where 2 = {0, 1} is the Boolean algebra of truth
values. Thus such a realization is just a truth-value assignment to the
variables in V , in such a way that the “conditions” in A are all satis-
fied, i.e. the elements a ∈ A are all taken to the value “true” (in other
words, a “model” of the propositional theory T ). For instance, if the
theory T is V = {x, y} and A = {x ∨ y,¬(x ∧ y)}, then a realization
would be an assignment of x to an actual sentence p, and y to one
q, such that only one of p and q is true (or more formally, a direct
assignement of such truth values, by-passing the actual sentences).
Under our description above, such a realization is an instance of the
general concept F (V )/A.

Now, such realizations are exactly the points of the Stone space
Stone(F (V )/A), the topological space associated to the Boolean al-
gebra F (V )/A under the celebrated Stone duality theorem (John-
stone, 1982)—which is in fact the “propositional logic” case of
the categorical logical duality that we are considering here. For-
mally, the points of Stone(F (V )/A) are prime filters in F (V )/A,
and the topology has basic open sets determined by the elements
of F (V )/A. The Boolean algebra F (V )/A can be recovered from
this space Stone(F (V )/A) as the algebra of continuous functions
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Stone(F (V )/A) → 2 into the discrete space 2, with the pointwise
Boolean operations. These abstractions of Stone(F (V )/A) form a
Boolean algebra Bool(Stone(F (V )/A)) which, by Stone duality, is
isomorphic to F (V )/A,

Bool(Stone(F (V )/A)) ∼= F (V )/A .

Indeed, for any (not necessarily Stone) space X, we can form the
Boolean algebra Bool(X) of continuous functions X → 2, and the
original space X will then map canonically to Stone(Bool(X)), giv-
ing the “best approximation” of X by a Stone space.

In the general case, in categorical logic we consider many other
fragments of logic—propositional, equational, coherent, first-order—
and for each such subsystem there is an associated Realization–
Abstraction adjunction between theories, and the concepts they rep-
resent, on the one hand, and their realizations by instances of these
concepts, on the other. The propositional theories just considered
give rise to Stone duality (Johnstone, 1982); equational theories (like
groups) give rise to Lawvere duality (Adámek, Lawvere and Rosický,
2003); coherent and first-order logic are treated by analogous duality
theories developed by Makkai and others (Makkai, 1987; Awodey
and Forssell, 2013). In each diffferent case, the associated notion of
structured category, structure-preserving functor, continuous functor,
etc., is suitably adapted to the respective situation. Many of these
logical dualities are discussed from the standpoint of categorical logic
in the paper (Awodey, 2021).
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6. Categories BRAIN andMIND

So far everything that has been said has merely been a reminder of
standard and well-known things. From now on, everything will be hy-
pothetical and highly simplified. The bold and maximally simplified
hypothesis is that neurons in the brain can be modeled as categories,
the internal logic of which is sufficiently complex (yet manageable).
Of course, our inspiring motive is the human brain, and in construct-
ing our model we shall try to imitate what is going in it; however,
being conscious of our simplified and highly idealized assumptions,
we prefer to speak about a homunculus brain. Our homunculus is
a kind of “mathematical robot”, the aim of which is to provide us
with the opportunity to study how such a simple brain-like structure
could “create meanings” out of its purely syntactic program. Our other
drastically simplifying assumption consists in systematically ignoring
all of the brain’s functions and processes that are not directly related
to the proposed syntax–semantics relationship.

As it is well-known, neurons communicate through signals trans-
mitted via: presynaptic (source) neuron – axon – synapse – dendrite
– postsynaptic (target) neuron, and this via is unidirectional. In our
homunculus model, these transmission processes will be regarded as
functors between categories (neurons).

Let us consider the category CATEGORIES, which we now aptly
call BRAIN. Its objects are categories modeling neurons, and mor-
phisms are functors between these categories.

We thus assume that each neuron in the homunculus brain is
represented by a category (belonging to a certain class of categories;
in the following we shall simply say that a neuron is a category).
At the moment, we are not interested which biological mechanisms
implement this assumption. Everything that counts in this model is
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the assumption that neurons consist of collections of objects and
morphisms satisfying conditions from the category definition. We
should have in mind that these simple conditions might lead to highly
complicated structures.

Morphisms (arrows) in the category CATEGORIES are functors
between object-categories, that is to say axons through which neurons
communicate with each other. The crucial thing is that they must
satisfy the usual conditions for morphisms: composition of morphisms,
its associativity, the existence of identity morphisms. With the latter
there is no problem: no output from a neuron counts as its identity
morphism. To check whether two other conditions are verified in the
human brain would require going deeper into the neural structure of
our brain. In the case of the homunculus brain, this is not necessary.
Since the homunculus is of our construction, we simply assume that
synapses in its brain well-compose and do so in the associative way.

The next step seems obvious. Each neuron (modeled as a category
C ∈ BRAIN) has its own program enabling its working, i.e. an internal
logic underlying this program. We thus can define a counterpart of
Lang(C) which is a “theory” of this neuron. It is reasonable to claim
that it is an object of the category THEORIES which we now call
MIND, and the functor Lang: BRAIN→MIND is defined in analogy
to that between CATEGORIES and THEORIES.

What about the morphisms between such objects? We proceed
in strict analogy with what has been done in THEORIES. Let now
T1 and T2 be objects in MIND, a morphism between them, T1,→
T2, is a functor between their corresponding syntactic theories, i.e.
Syn(T1) → Syn(T2), where the functor Syn: MIND → BRAIN is
defined in analogy to that between THEORIES and CATEGORIES.

The analogy is only apparently straightforward. In fact, it is based
on a huge extrapolation, and as such highly hypothetical, but it is
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worth exploring it since the problem at stake deserves even a higher
risk. By pursuing this analogy we could claim that also in this case
the functors Lang and Syn are adjoint functors. If so, we have a very
interesting conjunction between brain and mind; it is interesting even
if brain and mind are modeled by such a naive construction.

Neurons, their interactions and programs underlying their work-
ing are, in contrast with abstract categories like CATEGORIES and
THEORIES, real things, at least in the homunculus world, and we are
entitled to suppose that the functors Lang and Syn between Brain and
Mind really do what they formally signify (like our phase portrait on
the computer screen really did what the program told it to do).

Roughly speaking the functor Lang provides a collection of the-
ories (mind) for a collection of neurons (brain), and the functor Syn
transfers the syntax of these theories to the network of neurons. The
action of these two functors is adjoint; consequently it determines a
strict interaction between BRAIN and MIND. Let C be any object
(a neuron) in BRAIN and T any object (the theory of this neuron) in
MIND, then equation (1) assumes the form

(2) MIND(Lang(C), T ) ∼= BRAIN(C,Syn(T )).

The natural isomorphism ∼= appearing in this equation is crucial. It
states that when we go from neuron to neuron as objects in BRAIN,
and their corresponding theories vary in THEORIES, then the isomor-
phism between morphisms Lang(C)→ T in MIND and C → Syn(T )

in BRAIN varies in a way that is compatible with the composition of
morphisms in BRAIN and MIND, correspondingly, and with the ac-
tions of the functors Lang and Syn (see Awodey and Forssell, 2013; Le-
inster, 2014).9 Finally, the “higher” cognitive functions of abstraction

9 For a full discussion of the role of the naturality condition in the definition of adjoint
functors see any textbook on category theory.
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and realization of concepts are modelled by a corresponding adjunc-
tion between the associated functors Abstraction and Realization

relating these categories BRAIN and MIND. We could summarise
the situation by saying that the categories BRAIN and MIND interact
with each other with their entire structures and, at the same time, these
very structures are shaped by this interaction.

7. A Comment

The interactions between syntax and semantics are omnipresent both
in our everyday conversations and in various forms of practicing
science. The world around us is full of meanings and our attempts to
decipher them. Science could be regarded as a machine to produce
signs, through experimentation and critical reasoning, and extracting
from combinations of them information about the structure of the
world. Logicians put a lot of effort to make the syntax–semantics
interaction precise. As we have seen in section 2, despite the fact that
formal languages are lacking any external references, it was possible
to create semantical references for them by cleverly exploiting the
relation between language and its metalanguage. In categorical logic
the situation has improved. Any formal theory T generates via the
functor Syn the category Syn(C) = CT of which it is a theory, i.e. CT
provides a “natural” semantics for T . And vice versa, any (sufficiently
rich) category C ′, via the functor Lang, generates its own theory
Lang(C ′) = T ′

C′ which constitutes the internal logic of C ′. It is
interesting to notice that TCT

does not coincide with T , they are only
Morita equivalent. Here, we shall not go into technical details; it is
enough to say that two Morita equivalent theories could be regarded
as two interpretations of the same theory (Halvorson, 2016).
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The fact that TCT
does not coincide with T is a consequence

of the fact that the functors Lan and Syn are not mutually inverse
functors but constitute a pair of adjoint functors. This in turn implies
that in categorical logic the interaction between syntax and semantics
is skillfully complex, with creative influences coming both ways.

All the above discussed properties of the syntax–semantics inter-
action can be presumed to be preserved if applied to the categories
BRAIN and MIND. There is only one big difference: now “neurons
and their theories” are real things (although in a highly idealised, toy
version in the homunculus world). Nevertheless, the situation is not
so different from the one which we can observe in many empirical
sciences, in which some abstract mathematical structures model some
real processes (always more or less idealised). We should not be sur-
prised that the method of mathematical modeling works when applied
to our cognitive processes, but rather that mathematical structures not
only describe the real world (whether it is our brain or the world of
physics), but that they are also effectively acting in it (like in the little
arrow on the computer screen).
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Category Theory in
the hands of

physicists,
mathematicians,

and philosophers

Category Theory in Physics,
Mathematics, and Philosophy, Kuś
M., Skowron B. (eds.), Springer Proc.

Phys. 235, 2019, pp.xii+134.

The book under review is a re-
sult of the conference under the
same title which was held in War-
saw, Poland in November 2017. As
far as I know, it was the first con-
ference in Poland’s history on the
subject of category theory (CT) and
its applications. Warsaw is an ex-
cellent place for such an event if
only because of its traditions of the
Lvov–Warsaw School, but also be-
ing the place where Samuel Eilen-
berg (one of the founding fathers
of CT) was born and defended his
Ph.D. thesis. The majority of the or-
ganizers and speakers were Polish.
Nevertheless the significance and
impact of this conference, mainly
thanks to the proceedings, is defi-

nitely international. The present vol-
ume of ZFN, which itself is devoted
to the conference proceedings of the
next great event of this kind, shows
that the tradition of Polish confer-
ences on the subject of CT and its
applications emerges. It could only
be wished it would thrive in the fu-
ture.

The publication consists of 10
chapters, which are all separate ar-
ticles, the majority of which are
papers presented at the conference.
The subjects of the papers are very
diverse, which itself evinces how
vast are the applications of CT to
different areas of knowledge.1 The
reader not familiar with at least the
basics of CT will be much hindered
in the study of them.2 However, not
all the papers hinge on the technical-
ities of CT (see the first four chap-
ters). Others also require advanced
knowledge (mainly of physics, for
chapters 7 to 9).

The book begins with a few
pages of introduction, which
presents the work’s context and
succinctly discusses each chapter.
The first article, Why Categories?,
written by M. Kuś, B. Skowron, and

1 The reader interested in the subject of broad applications of CT may benefit also
from e.g. the great book (Awodey, 2010) (ZFN published its Polish review by Michael
Heller (2018)).
2 Textbooks in CT that may be consulted are e.g. (Awodey, 2010; Smith, 2018;
McLarty, 1995). Ph
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K. Wójtowicz, is also a kind of intro-
duction to the whole book, but from
a different perspective. It poses a
question (and attempts to answer it,
at least partially) about reasons for
such a significant increase in pop-
ularity of CT and its applications
in recent years. The great diversity
of the following chapters is a good,
though still only partial, example
of this phenomenon. This paper
presents some aspects of the origins
of CT, its relations with, and possi-
ble applications to philosophy and
physics. Within applications to phi-
losophy, it discusses structuralism
in the philosophy of mathematics,
foundations of mathematics, unity
of mathematics, and metaphysics.
In connection with physics, it ex-
amines mainly quantum mechan-
ics and its ontological foundations.
Nonetheless, the text is more than
a review. The authors, when dis-
cussing the above mentioned dif-
ferent applications of CT, also give
examples of their main claim: “cat-
egory theory is a formal ontology
that captures the relational aspects
of the given domain in question”
(p.1).3 These examples show how
the formal-ontological shift brought
by CT, meant as the shift from the

“standard and natural attitude to-
wards the objects, as if they were
individual subjects of properties
[. . . ] [to] a form of pure relational-
ity” (p.18), sheds some new light on
the old problems.

The next chapter, Category The-
ory and Philosophy, by Z. Król,
deals with relations between CT
and philosophy. One of the topics
addressed in this article, although
not the main one, is how set the-
ory (ST) and CT are similar and dif-
ferent. The author considers them
more broadly than just the formal
theories: “CT and ST are not singu-
lar formal theories, but rather open
domains accompanied by the rel-
evant methods and styles of con-
sideration, together with some ba-
sic concepts which can be investi-
gated within many different formal
theories” (p.22). The main part of
this article is a case study of cer-
tain classical problems in philoso-
phy and the question of the useful-
ness of CT in dealing with them.
The study is rather general without
deeper analysis, albeit the author
gives some details and references to
literature. It starts with remarks on
the great influence of mathematics—
in general—upon philosophy in its

3 References with no information except the page number refer to the book under
review.
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history. The studied cases concern
some issues in ontology (such as
monism vs pluralism, or mathemati-
cal Platonism) and epistemology.

K. Wójtowicz in his paper, Are
There Category-Theoretical Expla-
nations of Physical Phenomena?
(chapter 3), addresses a question of
mathematical explanation in science.
He asks especially whether CT may
give explanations of physical phe-
nomena. To answer this question he
first analyzes the general problem of
the explanatory role of mathematics
in physics, assuming (as a working
hypothesis) that “there are genuine
mathematical explanations in sci-
ence” (p.37). He admits that “it can-
not be denied that CT contributes to
our understanding of physics” (p.33)
and gives some illustrations for this,
mainly within the Topos Quantum
Theory. However, after noting first
that “if a model has no predictive po-
tential at all, it is doubtful whether
it really has explanatory character”
(p.38), his central claim is that “in
this sense there are no category-
theoretical explanations of physical
phenomena, in spite of there being
mathematical explanations” (p.38).
The author considers the contribu-
tion of CT to be “on the metatheoret-
ical rather than the theoretical level”
(p.40). He eventually writes: “CT
offers ‘meta-abstract explanations’”

(p.42). I have the feeling that this
article underestimates rather than
overestimates even the hitherto rel-
evance of CT to other disciplines.
Besides, maybe the future will show
more.

Chapter 4, entitled The Appli-
cation of Category Theory to Epis-
temic and Poietic Processes, by J.
Lubacz, tries to explore the possibil-
ity of applying CT and its notional
framework to “the analysis and mon-
itoring of progress in the unfold-
ing of [. . . ] processes,” (p.45) such
as acquiring knowledge and some
activity that results in the creation
of artefacts. These are called epis-
temic and poietic processes, respec-
tively. The style of this paper is def-
initely philosophical. After the in-
troduction, the author presents some
considerations about the processes
in question in the broader context
of philosophy as well as presenting
his own proposition of the possible
“conceptual structure of the pattern
and dynamicity of epistemic and
poietic processes” (p.48). Next, the
author ponders the potential applica-
tion of CT to epistemic and poietic
processes. He rightly notes that “it
must be clearly stated that the appa-
ratus of CT can only be employed
for those conceptual components
of epistemic and poietic processes
which are expressible in some for-
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mal language and form” (p.50). He
then develops his own proposal of
the possible use of CT in this con-
text, which is, however, rather gen-
eral and preliminary in nature.

In his paper, Asymmetry of Can-
torian Mathematics from a Cate-
gorial Standpoint: Is It Related to
the Direction of Time? (chapter 5),
Z. Semadeni addresses an interest-
ing feature of the Cantorian Math-
ematics. In his approach, Canto-
rian Mathematics is referring to “ba-
sic mathematical structures of alge-
bra, topology, functional analysis
etc. expressed in terms of set the-
ory, as they were conceived prior
to the emergence of category the-
ory, i.e., by the middle of the 20th

century” (p.55f). The author notes
and explains briefly that CT, in a cer-
tain sense (with respect to the rever-
sal of arrows), is symmetric. How-
ever, when we consider some cate-
gories with objects being structures
taken from Cantorian Mathematics,
then the products and coproducts of
these objects (separately in each cat-
egory) each have a different ‘style.’
Namely, while almost all examples
considered (and the author gives
quite a few of them) of products
turn out to be “the cartesian prod-
uct endowed with a suitable struc-
ture” (p.57) (and the remaining two

examples can be in some way cured
or revised alike), coproducts, how-
ever, “may be markedly different
from each other” (p.57). For some
categories coproducts “are based on
the same construction, namely on
the disjoint union” (p.57), but “in
other categories coproducts may dif-
fer basically” (p.57). As an exam-
ple, one of many the author gives,
let me note the category Grp (of
groups and their homomorphisms)
in which the coproduct is the free
product of groups, whereas in its
full subcategory of abelian groups
the coproduct is the (external) di-
rect sum of groups. The author
notes that similar asymmetry con-
cerns also equalizers and coequaliz-
ers (“albeit in a much milder form”
(p.59)), and other limits and colim-
its. At this point, he poses a philo-
sophical question: “What features
of Cantorian Mathematics lie be-
hind this asymmetry?” (p.60), and
suggests that it follows “from the
asymmetry of many-to-one relation-
ship in the notion of a function
f : X → Y ” (p.60). In the last
two paragraphs, we find an inter-
esting discussion showing that the
asymmetry between products and
coproducts changes, so to speak, di-
rection, when instead of considering
examples of an “algebraic” nature
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one considers structures of “coalge-
braic” nature connected with one-to-
many relation (“mostly stimulated
by Computer Science” (p.61)).

The next article, entitled Ex-
tending List’s Levels, by N. Dewar,
S.C. Fletcher, and L. Hudetz is an in-
teresting extension and modification
of the unified framework for mod-
eling different types of levels (de-
scriptive, explanatory and ontologi-
cal) proposed by C. List (2019). The
paper is well written—particular
notions are clearly introduced and
commented on and occasionally im-
portant and helpful examples are
given. First, the authors succinctly
review List’s approach and correct
a minor defect. Next, they analyze
the relationship between superve-
nience and reduction in this setting.
In general, supervenience does not
entail reduction (and the reader is
familiarized through a simple ex-
ample), but the authors have shown
that if the levels and supervenience
maps fulfill certain additional con-
ditions (they have to be compatible
and jointly characterizable, the no-
tions being defined and commented
in the text), then supervenience does
entail reduction. They note, more-
over, that “in many cases of super-
venience between scientific levels
of description, this [fulfilling the

above-mentioned condition(s)] can
be expected. So it is quite plausible
that in many cases of interest, su-
pervenience and reduction of levels
go hand in hand” (p.79). After these
considerations, the authors propose
two extensions of List’s framework:
from supervenience maps treated
as (total) functions to partial maps,
and from surjective maps to non-
surjective ones. These generaliza-
tions open new possibilities, de-
scribed in the text. Subsequently, the
authors move on to the most impor-
tant, in my opinion, part of their
work, namely to the modification
of List’s framework which involves
considering levels not only as ele-
ments of a certain poset (or objects
of a posetal category) but as cate-
gories of structures (more precisely,
they suggest “to represent a level of
description, L, as a pair ⟨L,Ω⟩ con-
sisting of a description language, L,
and a category, Ω, of L-structures”
(p.73)). This means that in order to
specify a level of description “one
does not only specify its structures
but also the morphisms (admissi-
ble transformations) between these
structures” (p.73). The choice of
morphisms “reflects which expres-
sions of L are taken to be mean-
ingful within the level L” (p.73).
Moreover, in this setting superve-
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nience relations between the levels
are viewed as functors. Another ex-
tension of the original framework is
made by allowing “all sorts of func-
tors to be included in a system of
levels of description” (p.77), rather
than just the supervenience functors.
The authors give also some exam-
ples involving these generalizations
and note that the extended frame-
work better serves for a philosophy
of science in general. This last gen-
eralization (of treating levels as cat-
egories) is far-reaching, as “taking
levels as categories themselves de-
mands a more robust use of cate-
gorial ideas [such as natural trans-
formations, adjunctions, and others]
that could also prove to be more
fruitful” (p.79).

The next three chapters deal
with applications of CT to physics.
The first of them, written by K.
Bielas and J. Król, titled From
Quantum-Mechanical Lattice of
Projections to Smooth Structure of
R4, uses CT to relate quantum alge-
bra structure with the smooth struc-
ture of spacetime. The paper is a
work in progress and is connected
with some earlier article by the au-
thors and another scholar, namely
Król et al. (2017). After the intro-
duction, in which the authors al-
ready bring in some key concepts,

they outline some quantum mechan-
ical preliminaries, i.a. introducing
a complete orthomodular lattice of
projections on a Hilbert space asso-
ciated with the initial quantum sys-
tem. This lattice (denoted as L) is
an algebraic basis of the so-called
quantum logic. As is well known,
generally (whenever dim H > 2)
L is not Boolean, which means that
logic of a quantum system defined
in this way is not classical. In or-
der to get the connection with the
classical world the authors, in the
next section, look at the subalgebras
of L which are Boolean. Each such
Boolean subalgebra, they argue, is
in a certain way “to be considered as
a local, classical frame of reference
for a quantum system” (p.87). Sub-
sequently, they show a way to con-
struct an orthomodular lattice from
its Boolean subalgebras as a suit-
able colimit in the category of so-
called partial Boolean algebras and
appropriate homomorphisms (one
has to do it in this larger catego-
ry, which extends the category of
orthomodular lattices and lattice ho-
momorphisms). Then it is shown, in
the next section, how one can arrive
at the smooth manifold by means
of some categorical constructions,
namely the authors conclude that
“given a smooth manifold, it is al-
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ways the colimit of its atlas” (p.89).4

Finally, the authors try to relate the
quantum structure with the differen-
tial (smooth) structure of the man-
ifold. However, it is still an open
problem if certain correspondence
has a functorial character. In the Dis-
cussion section some further consid-
erations are addressed, i.a. the cardi-
nality of the smooth atlas of exotic
R4.

Differential structure of a man-
ifold, or rather its enrichment in
terms of a so-called formal mani-
fold is a key tool of the next paper,
Beyond the Space-Time Boundary,
by M. Heller and J. Król. The ar-
ticle is quite technical, preparatory
for further research, but also funda-
mental and opening a truly intrigu-
ing path for new explorations.5 In
order to “cross the boundary” of a
singular spacetime, they use the so-
called Synthetic Differential Geom-
etry (SDG), which is a categorical
version of standard differential ge-
ometry and is based on intuition-

istic logic. After the introduction,
the authors offer many new notions
(known in the literature) needed
for further considerations and their
model in the next sections. Among
others, one considers various kinds
of infinitesimals, which enrich the
standard structure of R (or a man-
ifold in general) and make differ-
entiation a purely algebraic opera-
tion. The authors give a nice image:
“We may imagine that they [infinites-
imals] constitute the entire world in-
side every point of R, a sort of a
fiber over x ∈ R” (p.96). The reader
not familiar with such infinitesi-
mals may find the definition such
as “D = {x ∈ R|x2 = 0}” (p.97)
astonishing. Let me only note that
the intuitionistic logic plays one of
the key roles here. In SDG such an
object D obviously does not reduce
to {0}. It comprises so-called nil-
square infinitesimals, which are dif-
ferent, but at the same time indistin-
guishable, from 0.6 The whole col-
lection of (countably many) differ-

4 The reader might find it helpful to note that there is a certain confusion with the
notation: on p.88, Vi is a subset of Rn, whereas in the Corollary 2, on p.89, Vi is a
subset of the manifold. It would be more natural to denote on p.89, in accordance with
the notation from p.88, Vi as Ui, and Wi as Vi.
5 The interested reader may consult also other papers in this subject by these authors,
e.g. see (Heller and Król, 2016; 2017).
6 In the intuitionistic logic, double negation does not, in general, imply identity (double
negation elimination is not a theorem), so not being different from 0 (not being not
equal 0) does not imply being identical to zero or, in other words, indistinguishability
does not, in general, imply identity.
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ent kinds of infinitesimals serves to
distinguish various kinds of neigh-
bourhoods, which in turn allow us to
define various kinds of the so-called
monads. In the proposed model, for
example when thinking about the
evolution of the universe back in
time, these monads, which are or-
dered (relative to each other) and
represent various kinds of differen-
tiability properties, provide suitable
structures to describe the evolution
after crossing the singular boundary
(which from the physical point of
view might possibly be identified
with Planck’s threshold). The au-
thors note that the model “does not
pretend to describe the actual evolu-
tion of the universe. At its present
stage of development, it is nothing
more than a toy model” (p.96). The
toy models, however, can play a sur-
prisingly significant role in the de-
velopment of more realistic physical
models! Two appendices give more
details, for example about the way
infinitesimal spaces may appear in
the model.

The methods of SDG are also
the main mathematical tools used in
the next paper in application to the
pursuit of quantum gravity (QG). J.
Król in his article Aspects of Per-
turbative Quantum Gravity on Syn-
thetic Spacetimes gives his own con-

tribution to this huge endeavor. In
the introduction, the author presents
some of the results in QG obtained
so far. He follows the known per-
turbative approach to QG (which
involves an expansion of the met-
ric tensor around the flat Minkowski
spacetime and an attempt to quan-
tize the fluctuations around it) but
tries to use new methods in the con-
text of SDG. As he notes, “The par-
ticularly well-defined area of appli-
cability of synthetic methods will
appear to be perturbative quantum
gravity” (p.107). Some definitions
and notions are common with the
previous chapter (which J. Król co-
authored). The reader has to be fa-
miliar with some background knowl-
edge and notations from the liter-
ature in order to fully follow the
contents of the paper. I will not
bring up the details of the article,
which comprises much more con-
siderations than are mentioned here.
I only note that the author consid-
ers both the case of pure gravity (no
matter fields) and the case with mat-
ter. Synthetic methods are applied in
the context of the so-called BCFW
procedure (from the names of the au-
thors of (Britto et al., 2005), also see
Appendix B of the paper by Król)
and lead, inter alia, to the following
results: (i) “The pure perturbative
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covariant QG on synthetic space-
time is entirely finite theory [. . . ]
[and] gµν can now be considered as
fully quantized field” (p.112); (ii)
“supergravity theory [for N = 8

and with matter fields] formulated
on synthetic spacetime is again fi-
nite and gµν quantized” (p.112). In
the last section the author also re-
flects on the question, “how (if at
all) it can be that a perturbative QG
is considered a fundamental theory”
(p.113).

The last chapter, titled Cate-
gory Theory as a Foundation for
the Concept Analysis of Complex
Systems and Time Series, by G.N.
Nop, A.B. Romanowska and J.D.H.
Smith, deals with the applications
of CT to so-called concept analy-
sis. The paper extends and general-
izes the existing applications. Con-
cept analysis studies relationships
between some items and properties
they possess. After the short intro-
duction, the authors give a summary
of the notions used in this context.
Although they are adopted in vari-
ous fields of study (and may have
different names), they “provide es-
sentially equivalent tools for the
analysis of a static system function-
ing at a single level” (p.120). To get
some taste of the paper let me only
mention one special notion, that of

a concept of a certain context. A
context is a triple made of a set of
items (Ω), a set of properties (Π),
and a relation between them attribut-
ing properties to items (being a re-
lation it is a subset of Ω × Π). A
concept of such a context is an or-
dered pair (A,B) (denoted in the
text as (A|B)), where A is a subset
of items and B is a subset of prop-
erties, such that the set of proper-
ties common to all items in A is ex-
actly B and at the same time the set
of items attributed to all properties
in B is exactly A. I think one may
say that in this way we get a certain
characterization of some items in
terms of properties (and vice versa).
In general, the power sets of Ω and
Π (treated as poset categories) are
connected with certain adjoint func-
tors known as a Galois connection.
In the paper, the reader is familiar-
ized with many other notions and
some simple examples as well. Then
the authors proceed to “present the
foundations for an extension of the
ideas of concept analysis to chang-
ing environments, evolving complex
systems, and time series analyses of
successive stages of a given system”
(p.119), which is the main goal of
the paper. The extension to complex
systems is done, generally speaking,
in terms of certain functors from a
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semilattice (which serves as a kind
of index of distinct levels or, if it is a
chain, of time points) to appropriate
categories, though the procedure is
more sophisticated.

In sum, the book under review
is a testimony to the breadth of ap-
plications of CT in physics, mathe-
matics, and philosophy. The book is
worth reading, in general, although
the chapters are so diverse (in the
subject matter and sometimes also
in the scientific value) that I suppose
the reader that is not interested in all
of the interdisciplinary applications
should focus on the part (s)he is in-
terested in; e.g. chapters 7–9 may
be truly engaging for readers famil-
iar with general relativity and quan-
tum mechanics but may be com-
pletely incomprehensible for non-
physicists. The papers contained in
the book are not review articles nor
popular science, but are mostly con-
ference papers, which makes the
reading much more demanding (rec-
ommended for graduate-level read-
ers and beyond) though at the same
time much more fascinating.

Mariusz Stopa
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prowokująca teoria kategorii.
Philosophical Problems in Sci-
ence (Zagadnienia Filozoficzne
w Nauce) [Online], (65), pp.232–
241. Available at: https://zfn.edu.
pl/index.php/zfn/article/view/
451 [visited on 24 July 2020].

Król, J., Asselmeyer-Maluga, T.,
Bielas, K. and Klimasara, P.,
2017. From Quantum to Cos-
mological Regime. The Role
of Forcing and Exotic 4-
Smoothness. Universe [On-
line], 3(2), p.31. Available at:
https : / / doi . org / 10 . 3390 /
universe3020031.

List, C., 2019. Levels: Descriptive,
Explanatory, and Ontological.

https://arxiv.org/abs/hep-th/0501052
https://arxiv.org/abs/hep-th/0501052
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1103/PhysRevLett.94.181602
https://arxiv.org/abs/1605.03099
https://doi.org/10.3390/universe3010016
https://doi.org/10.3390/universe3010016
https://zfn.edu.pl/index.php/zfn/article/view/451
https://zfn.edu.pl/index.php/zfn/article/view/451
https://zfn.edu.pl/index.php/zfn/article/view/451
https://doi.org/10.3390/universe3020031
https://doi.org/10.3390/universe3020031


Book reviews 293

Noûs [Online], 53(4), pp.852–
883. Available at: https : / / doi .
org/10.1111/nous.12241.

McLarty, C., 1995. Elementary Cate-
gories, Elementary Toposes. Ox-
ford: Oxford University Press.

Smith, P., 2018. Category Theory:
A Gentle Introduction [Online].
University of Cambridge, lecture
notes. Available at: http://www.
logicmatters . net / resources /
pdfs/GentleIntro.pdf [visited on
24 July 2020].

https://doi.org/10.1111/nous.12241
https://doi.org/10.1111/nous.12241
http://www.logicmatters.net/resources/pdfs/GentleIntro.pdf
http://www.logicmatters.net/resources/pdfs/GentleIntro.pdf
http://www.logicmatters.net/resources/pdfs/GentleIntro.pdf


Contemporary
Polish ontology.
Where it is and

where it is going

Contemporary Polish Ontology.
Skowron, B. (ed.), Philosophical
Analysis, 82. Berlin; Boston: De

Gruyter, 2020. pp.320.

The Contemporary Polish On-
tology is a collection of recent works
by Polish ontologists. The volume
includes thirteen papers and intro-
duction as well as discussion sec-
tions. The authors published in the
volume are associated with the In-
ternational Center for Formal Ontol-
ogy (ICFO) at the Faculty of Admin-
istration and Social Sciences, War-
saw University of Technology, and
they are affiliated with several re-
search centers across Poland. The
articles in the book therefore reflect,
to some degree, the state of current
ontological research in Poland.

The volume is not intended to
be read from cover to cover, as it
includes a diverse collection of top-
ics united only by a common on-
tological vantage point. Few peo-
ple, I suspect, would be interested
in reading each chapter. So, how
should we approach this book, and
why might someone want to read it?

It seems there may be two reasons
for doing this and two ways to do
it. For example, someone may want
a primer on the state of ontological
research in Poland, such as who is
doing what, what topics are being
investigated, and what questions are
being posed. Alternatively, someone
may be interested in a specific topic
and what has been done in that area.
If you fall into the first group, you
should read the introduction written
by Bartłomiej Skowron and the final
chapter, An Assessment of Contem-
porary Polish Ontology (Skowron,
2020, pp.271–294), which has been
coauthored by several researchers,
but particularly the section written
by Skowron. This section provides
a succinct yet comprehensive review
of the state of Polish ontology, to-
gether with some added historical
background. If you want to then go
further, you may find specific top-
ics that pique your interest by read-
ing the introduction before diving
deeper into the volume. If you fall
into the second group, namely being
interested in just a specific topic, or
are concerned with specific ontolog-
ical questions, you should start with
the introduction and then establish
which chapters are of most interest
to you.

So, what topics are presented
in the volume? Tomasz Bigaj dis-
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cusses the concept of symmetry in
structures, proposing its redefinition
and indicating its possible impact on
Quantum Theory. Mariusz Grygian-
iec, meanwhile, analyzes the pos-
sibility of integrating the concept
of personal identity into animalism
and that of the Simple View. Next,
Filip Kobiela analyzes the concept
of the present and Ingarden’s take on
this, thus formulating the “outline
of the ontological theory of relativ-
ity of the duration of the present.”
Zbigniew Król and Józef Lubacz
then take over by exploring the epis-
temic conditions for the knowledge
of existence, suggesting how this
type of knowledge may be obtained
in the conscious subject. Andrzej
Biłat then attempts to formulate the
classical conception of philosophy,
which can be understood as the phi-
losophy of Plato and Aristotle, and
shows its compatibility with contem-
porary logic and science. Urszula
Wybraniec-Skardowska, meanwhile,
tries to formulate the ontology of
language, where language has a par-
ticular ontological status. Krzysztof
Śleziński explores Bornstein’s con-
cepts of general ontology and shows
how his ideas live on in the cur-
rent research into spatial logic. Next,
Janusz Kaczmarek explores the con-
cepts of topological ontology and

their relation to Leibniz’s Monadol-
ogy. Coming back to Krzysztof
Wójtowicz, he discusses the neces-
sary conditions for the existence of
mathematical objects and demon-
strates the import of this discus-
sion to the realism–antirealism de-
bate in the philosophy of mathemat-
ics. Rafał Urbaniak, meanwhile, re-
views approaches to the formula-
tion of mathematical theories, fo-
cusing on the status of neologicism.
Jacek Paśniczek explores the appli-
cation of an algebraic framework
based on the De Morgan lattice for
the representation of the ontologi-
cal features of possible worlds and
situations. Next, Marek Magdziak
presents a logical study on the con-
cepts pertaining to the notion of ac-
tion, while Michał Głowala endeav-
ors to demonstrate how some con-
ceptual tools of scholastic philoso-
phy can be helpful in resolving the
current debates about the ontologies
of intentionality and powers.

All in all, the Contemporary
Polish Ontology is certainly worthy
of attention. It provides a panorama
of the various ontological topics
that are currently being pursued in
Poland. Anyone with an interest in
ontological questions will likely find
an engaging paper. For those in-
terested in the state of Polish phi-
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losophy, meanwhile, the discussion
in the final chapter, An Assessment
of Contemporary Polish Ontology,
is worthy of particular attention.
This discussion—which has been
coauthored by Bartłomiej Skowron,
Tomasz Bigaj, Arkadiusz Chrudz-
imski, Michał Głowala, Zbigniew
Król, Marek Kuś, Józef Lubacz, and
Rafał Urbaniak—lists several chal-
lenges that are being faced by Pol-
ish ontology and philosophy in gen-
eral. The presented facts are rather
well known but rarely explicated,
and the remedy for these shortcom-
ings is less obvious and seemingly
out of reach for now. Some of the
contributing authors to this chap-
ter question whether we are doing
good research (which we seem to
be), why are we ranking so low
in the world market for ontologi-
cal ideas, and why is what we do
is rather unknown (albeit with no-
table exceptions) outside the limited
circle of Polish universities. Our re-
cent history and the relative obscu-
rity of the Polish language clearly
offer some excuses here, but these
do not entirely explain everything
away. The final section of this chap-

ter, Skowron’s excellent essay, takes
a more positive note and is essential
to retaining a balanced, yet critical,
perspective on Polish Ontology. Un-
fortunately, the essay is rather short.

All the papers in the volume are
clearly written and well organized,
but a few additions could have im-
proved the value of the collection.
For example, the papers could have
placed the presented research within
the context of similar discussions
outside Poland. In other words, the
authors could have provided a well-
documented background to the top-
ics. If Polish philosophy is to come
out into open and avoid the poten-
tial accusations of navel-gazing, it
should do so by relating its find-
ings to the dialogue among the in-
ternational ontological community
about current problems. Naturally,
this should be done while preserv-
ing our unique and original perspec-
tive, although I concede this may be
a challenge. With the notable excep-
tion of a few papers, this larger con-
text is not really emphasized in the
Contemporary Polish Ontology.1

What is also a little concerning
is the limited references that are sup-

1 To gain a wider perspective on ontology, we may look for comparison at the se-
lection of topics presented during the latest Joint Ontology Workshops’ (JOWO)
meeting and see where Contemporary Polish Ontology fits in. The program of
the JOWO 2020 Episode VI: The Bolzano Summer of Knowledge is available at
<https://www.iaoa.org/jowo/2020/>.

https://www.iaoa.org/jowo/2020
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plied in some articles, again with the
notable exception of several papers.
There is also a notable absence of
some hotly pursued topics in current
ontology, such as the ontologies of
computing objects, sciences (e.g., bi-
ology, genetics, medicine, engineer-
ing), and system design, as well as
object ontology. What is more, as
we have indicated, what would po-
tentially improve the book’s recep-
tion is a short chapter that would
place the book (assuming that the
intention is to give an overview of
Polish ontology) in the context of
ontological research outside Poland.
This information, as we have said,
maybe found in the introduction to
several essays, but unfortunately it
is dispersed and not very detailed
and systematically exposed. More-
over, the collection would provide
a more rounded image of contem-
porary Polish ontology if it could
avoid the potential critique of assum-
ing a limited perspective, such as if
the volume mentioned work origi-
nating from other places not associ-
ated with the ICFO. (In his review,
Skowron does provide a more com-
prehensive and inclusive list of Pol-

ish philosophers dealing with onto-
logical themes.)2

To summarize this review, we
may say that Contemporary Pol-
ish Ontology does serve several de-
tailed ontological studies from lead-
ing Polish research centers. The
range of topics is rather broad, and
anyone interested in ontology will
certainly find something of inter-
est. In hindsight, however, one may
question why certain topics that are
prevalent in the current ontological
debates are absent from the volume.
Maybe the selection of topics re-
flects the specificity of the Polish
school, however. The clearly writ-
ten introduction guides the reader
to specific topics and therefore re-
moves the need to read all of the
abstracts. The final chapter, in con-
trast, is very much addressed to the
Polish audience: One may call it
a manifesto of sorts, a “What to
do?” in the world of Polish ontol-
ogy and Polish philosophy in gen-
eral. From the book, one may come
to know the key Polish researchers
(their email addresses are provided)
working in ontology. Such informa-
tion is valuable, and the volume also

2 For example, the volume could mention the work of Michal Heller on existence in
physics (Heller, 2018) or Edward Malec’s work on the existence of black holes (Malec,
2018). The volume from which these two works are cited is entitled On what exists in
physics.
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serves the secondary purpose of be-
ing a “Who’s who” in Polish ontol-
ogy.

RomanM. Krzanowski
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