
Philosophical Problems in Science (2024), 77, 3–23
(Zagadnienia Filozoficzne w Nauce)

doi:10.59203/zfn.77.694

ARTICLE

Explaining the undecidability of first-order logic
Timm Lampert*† and Anderson Nakano‡

†FernUniversität Hagen
‡Pontifícia Universidade Católica de São Paulo
*Corresponding author. Email: timm.lampert@fernuni-hagen.de

Abstract
Turing proved the unsolvability of the decision problem for first-order logic (Entscheidungsproblem)
in his famous paper On Computable Numbers, with an Application to the Entscheidungsproblem. From
this proof it follows that attempts to specify a solution for the Entscheidungsproblem through pattern
detection in automated theorem proving (ATP) must fail. Turing’s proof, however, merely
predicts the non-existence of such solutions; it does not construct concrete examples that explain
why specific attempts to solve the decision problem by pattern detection fail. ATP-search often
runs in infinite loops in the case of unprovable, i.e. not refutable, formulas and one can ask why
finite patterns of repeated inference steps cannot serve as criteria for unprovability. We answer
this question by constructing pairs of formulas (ϕ,ϕ′) such that ϕ is provable (refutable) and ϕ′

is unprovable (satisfiable in an infinite domain) but all but the last proof step of the ATP-search
for ϕ is a proper part of the endless ATP-search for ϕ′. We generate such pairs of formulas
by mimicking computable sequences for a certain kind of universal Turing machine, namely,
splitting Turing machines (STMs), via sequences of inference steps in ATP. In contrast to Turing’s
and the textbooks’ method to formalize Turing machines, our method does not rely on further
axioms and allows us to transfer the straightforward insight that the halting problem cannot
be solved through pattern detection to the case of the Entscheidungsproblem. Our method is a
constructive alternative to general undecidability proofs that explains why a scientific problem,
namely the Entscheidungsproblem, is unsolvable in a specific way. This explanation provides a better
understanding of the failure of pattern detection, which is of interest to: (i) the programmer, who
is concerned with prospects and limits of pattern detection, (ii) the logician, who is interested in
identifying logical properties by properties of an ideal notation, and (iii) the philosopher, who is
interested in proof methods.

Keywords: constructive proof, automated theorem proving, Entscheidungsproblem, pattern detection, halting
problem

1. Introduction
Undecidability proofs of FOL based on Turing machines involve expressing a Turing machine
as an FOL formula and demonstrating that the decidability of FOL implies the decidability
of some problem that is unsolvable for Turing machines. This latter problem, in turn, is
typically proven to be unsolvable using the diagonal method and hypothetical reasoning.

This is an open access article distributed under the terms of the CC-BY-NC-ND 4.0 license.
© Copernicus Center Foundation, Timm Lampert & Anderson Nakano 2024.

https://doi.org/10.59203/zfn.77.694
mailto:timm.lampert@fernuni-hagen.de


4 Timm Lampert & Anderson Nakano

Such a proof is independent of any concrete decision method. It establishes that there cannot
exist any algorithm that solves, for instance, the halting problem by referencing the very
special case of self-application. This strategy unfolds as follows. Suppose that there exists a
machine H that solves the halting problem. Furthermore, consider a machine M that applies
H and, after doing so, does not terminate if H decides that it terminates, but terminates
otherwise. When M is executed with its own description number as input, this leads to a
contradiction, thereby proving the falsity of the initial assumption.

This proof method allows one to prove the non-existence of any algorithm whatsoever
that may decide the halting problem and, in consequence, FOL without considering concrete
attempts to solve the decision problem. Such a proof method is both powerful and simple,
but its explanatory power for the failure of the design of specific procedures is limited (cf.
Turing 1937, 246; for reservations against his own method).

In our assessment, part of the dissatisfaction with such proofs stems from the unfulfilled
desire to understand more than merely the fact that certain decision problems are unsolvable
because this would entail contradictory (or tautologous) instructions in the hypothetical
diagonal case. In contrast, our aim is to explain why a seemingly promising approach to solve
the decision problem for FOL, based on pattern detection in ATP, proves futile. Such an
explanation must depend on specific features of pattern detection in first-order ATP-search
in order to explain what is futile in this approach independent of the general insight that
decidability of FOL is impossible due to the diagonal and counterfactual case of self-application.
On the one hand, our explanation is more specific and informative than the general insight
of undecidability of FOL. On the other hand, it is based on weaker assumptions, as it uses
counterexamples to demonstrate the futility of distinguishing refutability and satisfiability
by patterns of ATP-search, without relying on counterfactual diagonal cases or expressing
Turing machines within FOL.

We believe that explaining undecidability by disproving specific algorithms purported
to solve decidability is crucial for achieving a deeper understanding of the phenomenon
of undecidability. To the best of our knowledge, such explanations are seldom provided.
We aspire to alter this situation and thereby contribute to a better understanding of the
limitations of ATP and pattern detection in particular and of decidability and algorithmic
problem solving in science in general.

We first expound our question in section 2 before presenting our main argument in
section 3. Further details of this argument are available in a computer program that we
implemented, the behavior of which we briefly describe in section 4.

2. Expounding the question
When designing algorithms for automated reasoning, one of the goals of a software engineer
is to develop specific decision procedures that are as powerful as possible. In this context,
a logic programmer is not concerned with the diagonalization of a hypothetical, unreal
decision procedure. Instead, she may be interested in coming to understand the reasons for
limits of actual attempts to spell out concrete decision procedures for FOL formulas. The
metalogical literature, however, has predominantly focused on distinguishing decidable from
undecidable fragments of FOL, regardless of concrete proof search methods. In doing so,
undecidable fragments are typically reduced to expressing problems within FOL that are



Explaining the undecidability of first-order logic 5

undecidable due to hypothetical reasoning and diagonalization (cf. Börger, Grädel, and
Gurevich 2001). This approach, however, offers limited insight into the possibilities and
constraints of specific methods for making progress in deciding formulas of such fragments.
Moreover, for decidable fragments, their decidability may not even be demonstrated by some
reasonable decision procedure based on decision criteria (see the following paragraph).

Consider, for example, finite sets of first-order formulas. From a metalogical and classical
perspective, we are informed that any finite set of formulas is decidable (cf. Dreben and
Goldfarb 1979, p.1). This makes evident the classical, extensional point of view in metalogic.
From this point of view, what is asked is whether some decision procedure exists rather than
how to specify a reasonable procedure. As there exists a table with the correct entries 1 and 0
for “provable” and “unprovable” formulas, respectively, for any finite set of formulas, there
also exists a computable function that assigns 1 and 0 to each formula. Consequently, in
the case of finite sets of formulas, computation is tantamount to “looking up the answer in
a table” (Börger, Grädel, and Gurevich 2001, p.239). However, the logic programmer is
concerned with developing a program to generate such a table by applying decision criteria.
For her, the mere demonstrable existence of such a table, without the means to construct it
by applying a decision criterion, is irrelevant.

Therefore, from the perspective of the logic programmer, the relevant question is the
extent to which specifying decision criteria is possible for arbitrary, finite or infinite, sets
of formulas. From a classical point of view, one may be content with undecidability proofs
proving nothing but the absurdity of assuming the existence of a general decision algorithm,
independent of considering any decision criteria. However, the more significant question
for explaining undecidability concerns the possibility and limits of specific decision criteria.
Roughly speaking, the question of undecidability is not an extensional one but rather an
intensional one when viewed from this perspective.

Since every provable (refutable) first-order formula can be decided as provable (refutable)—
a property known as the semidecidability of FOL—and since every first-order formula with
finite models can be decided as satisfiable (and, thus, not refutable1), the challenging, albeit
still countably infinite, set of formulas consists of those with only infinite models. Formula
(1) serves as a simple example of a formula with only infinite models. (2) is its skolemized
clause form2 with the literals numbered3. Interpreting Pxy by x < y in the natural numbers
yields an infinite model of (1) and (2); see (Börger, Grädel, and Gurevich 2001, p. 33) and
(Lampert and Nakano 2020), Theorem 4 for proving that a formula like (1) has only infinite
models.4

FOL formula: ∀x1∃y1(Px1y1 ∧ ∀x2(Px2y1 ∨ ¬Px2x1)) ∧ ∀x3¬Px3x3 (1)

clause form:
{{P[x1, sk1(x1), 1]}, {P[x3, sk1(x1), 2],

¬P[x3, x2, 3]}, {¬P[x4, x4, 4]}}
(2)

1. In the following, we basically refer to a proof search for refutablity as is usual in ATP.
2. Skolemization is standard in ATP and allows to eliminate existential quantifiers ∃µ in favor of skolem-functions,

which contain the variables ν such that ∃µ is in the scope of ∀ν, (cf. Baaz, Egly, and Leitsch 2001, chapter 5.5) and
(Nonnengart and Weidenbach 2001, chapter 6.3 and 6.5) for converting FOL-formulas to clauses with so-called
outer skolemization that we refer to.

3. Numbering literals serves the purpose of making computation and pattern detection more effective.
4. (Lampert and Nakano 2020) specify a procedure to generate formulas with only infinite models.



6 Timm Lampert & Anderson Nakano

Since no finite models are available, model finders provide no assistance for an algorithmic
treatment of formulas with only infinite models. For certain fragments of FOL, mere
inspection of normal forms suffices to determine the refutability of an initial formula. For
example, monadic FOL, which encompasses propositional logic, or so-called Herbrand
formulas, which lack disjunction in negated normal form, can be decided without resorting
to an exhaustive proof search within a complete calculus. For a straightforward example,
consider a disjunctive normal form (DNF) of a propositional formula ϕ: ϕ is refutable if
and only if each disjunct of its DNF contains both a literal A and its negation ¬A. Similarly,
the validity of Aristotelian syllogisms can be read off (and, therefore, decided) from Venn-
diagrams.

However, mere inspection of normal forms or, more generally, of FOL-formulas or
clauses, is of little help with regard to formulas lacking the finite model property such as
the above mentioned decidable FOL-fragments. While finite models can be read off from
properties of a finite proof search, infinite models may correspond only to an infinite proof
search. Refutable formulas, which have neither finite nor infinite models, exist that are
only refutable if some rule is applied iteratively to increase complexity. Examples of such
a rule include the so-called rule of expansion in resolution or tableau calculi (cf. the proof
search corresponding to Figure 5 below) and A ⊢ A ∧ A (or A ⊢ A ∨ A) in other complete
calculi of pure FOL. In such cases, one cannot read off the logical property in question, such
as refutability, from some normal form expression.5 Instead, one may need to iteratively
increase the complexity of the formula to a certain level to find a proof of refutability. This
raises the issue of how to specify the extent of complexity increase. Iterative application of a
rule increasing complexity may lead to a proof of a refutable formula or may indicate that no
finite model can be inferred from the proof search of a formula with only infinite models.

The most direct and promising method of deciding at least some formulas with infinite
models is the so-called “method of saturation”. This method consists of a systematic proof
search within a complete calculus that yields a proof in the case of provability (refutability)
and may terminate in the case of unprovability (satisfiability) due to exhaustive application of
the rules of the calculus. The challenge for the logic programmer lies in defining criteria
that specify exhaustive rule applications, allowing one to conclude that no proof will be found
through additional applications. The most direct criterion for this purpose is the so-called
criterion of regularity. If a sequence of inference steps derives the same formula twice on a
proof search path, there is no need to continue searching for a proof on this path within
an exhaustive search for proofs of minimal length. By this criterion, for instance, the set of
formulas that can be converted into prenex normal forms with no existential quantifier in
the scope of a universal quantifier can already be decided in tableau or resolution calculi.
However, this set of formulas does not include formulas with only infinite models. As soon
as existential quantifiers occur in the scope of universal quantifiers—as is the case in formulas
with infinite models only—new variables emerge in the iterative application of an inference
rule in ATP, rendering regularity insufficient to terminate endless iterations. To address this,
a generalization of this criterion is required.

5. Only decidable fragments of FOL can be decided without a rule increasing complexity. (Lampert 2017), e.g.,
demonstrates how disjunctions of Herbrand formulas can be decided without employing a rule that may increase
complexity. In other cases, however, proof search is incomplete without a rule increasing complexity to an arbitrary
level.



Explaining the undecidability of first-order logic 7

We distinguish between two senses of regularity and, consequently, regular sequences:
narrow and broad. The former implies the repetition of members in a computable sequence
in the strict sense of repeating exactly the same expression (as is the case according to the
standard regularity criterion), whereas the latter implies the repetition of a certain pattern in
a computable sequence that can be identified by a law.

By a law, we mean a rule that generates, without further computation,6 potentially
infinitely many members of a sequence by generating the nth member either directly from
previous members (inductive definition) or directly from n (explicit definition). Examples
of sequences that can be generated by a law include b, ab, aab, aaab, aaaab, ..., generated by
the regular expression “a∗b”; the sequence of Fibonacci numbers, 0, 1, 0 + 1, 1 + (0 + 1),
(0 + 1) + (1 + (0 + 1)), (1 + (0 + 1)) + ((0 + 1) + (1 + (0 + 1))), . . ., generated by an = an−1 + an−2;
and the sequence of squares, 1 · 1, (1 + 1) · (1 + 1), (1 + 1 + 1) · (1 + 1 + 1), . . ., generated by
an = n · n. An example of a sequence that could not hitherto be generated by a law is the
computable sequence of prime numbers. According to our understanding, this sequence,
although computable, does not appear to be governed by a pattern that could be identified by
a law. Instead of constructing the next prime number, we must search for it in a finite interval.
While we can search for the next prime number within this finite interval, the outcomes of
these searches are not governed by a law. As a result, the sequence of prime numbers does
not qualify as a regular sequence governed by a pattern in our sense.

Table 1 presents examples in number theory comparing the irregular decimal expansions
of

√
2 and π

4 to their so-called regular (
√

2) and irregular (π4 ) continued fractions, which can
be characterized as regular sequences in the narrow and broad senses, respectively. Note that
the usual distinction between regular and irregular continued fractions does not correspond
to our distinction between regular and irregular sequences. Instead, it refers to the partial
numerators, which are always 1 in the case of regular continued fractions, while they vary
in the case of irregular continued fractions. Since the partial numerators are always 1 in
regular continued fractions, they are omitted in shorthand notation. Therefore, the shorthand
notation for the regular continued fraction for

√
2 is [1; 2, 2, 2, . . .], which makes evident

its regularity in the narrow sense. The irregular continued fraction for π
4 , however, is a

regular expansion in the broad sense, as both the numerators and denominators are not
strictly identical but develop according to a law.

Henceforth, we will use the unqualified phrase “regular sequence” to refer to a “regular
sequence in the broad sense”, which is a “sequence generated by a law”. Furthermore,
whenever we speak of a “pattern of a sequence”, we presume that this pattern can be specified
by a law. However, this does not imply that this pattern is, in fact, endlessly repeated in
a computable sequence; as we will see, this may or may not be the case. That is, we also
allow only a part of a finite or infinite sequence to be defined by a law: in this case, n in the
inductive or explicit definition is, in fact, restricted to a finite number. The pattern itself
is always finite but can be repeated either a finite number of times or indefinitely. Finally,
when we speak generally of “rules” or “instructions of Turing machines”, “Turing machines”
or “computable sequences”, we do not presume that they are or can be specified by laws.
Computable sequences may involve lawless parts or they may involve law-governed finite

6. Note that translations into other notations include further computation. This is why the following sentence
in the main text does not present the sequence of Fibonacci numbers or the sequence of squares in the decimal
notation, which would translate regular sequences into irregular sequences.



8 Timm Lampert & Anderson Nakano

sequences that may be both (i) proper parts of a finite computable sequence or (ii) endlessly
repeating parts of an infinite computable sequence. We will argue that this is relevant to our
question of the possibility to decide provability based on patterns in ATP.

Table 1. Irregular and regular number sequences

Number Narrow Regularity Broad Regularity Irregularity
√

2 1 + 1
2+ 1

2+ 1

. . .

, — 1.4142135 . . .

π
4 — 1 + 12

(1+(1+1))+ (1+1)2

((1+(1+1)+(1+1))+ (1+1+1)2

. . .

0.7853981 . . .

Regularity in the narrow sense is the simplest example of a repeating pattern that enables
the termination of a sequence of inference steps in the case of unprovability. If regularity
in the narrow sense applies to all open proof paths without a contradictory pair of literals,
then the unprovability of the initial input formula can be decided according to the saturation
method within an exhaustive proof search. An example of a simple formula that can be
decided based on regularity in the narrow sense is (3), with its clause form given in (4),
skolem-functions with zero arguments are treated as constants.

FOL formula: ∃y1¬Py1y1 ∧ ∃y2∀x1∀x2((Px1x2 ∨ ¬Py2x2) ∧ Py2y2) (3)

clause form:
{{¬P[sk1, sk1, 1]}, {P[x2, x1, 2],
¬P[sk2, x1, 3]}, {P[sk2, sk2, 4]}}

(4)

Formula (3) has a finite model, for instance ℑ(x1, x2, y1, y2) = {1, 2},ℑ(P) = {(1, 1), (2, 1)}.
Figure 1 illustrates the application of the regularity criterion in the tight connection tableau
calculus initialized by clauses with only negative literals. This calculus, along with the ATP-
search based on it, is known to be complete (cf. Letz and Stenz 2001). In this paper, we
presume this calculus for ATP for clause forms.7 Additionally, we limit ourselves to cases
where the proof tree has only one node (i.e., one tableau), that is, to cases where a deterministic
proof search is known to be complete.8 Such a proof search implies that all proofs considered
are of minimal length. This is a significant simplification for our reasoning because it enables
us to focus on the validity of the purported decision criteria rather than considering the
relevance of our criteria for the elimination of nonminimal proofs.

To focus on questions of pattern detection, we employ visualizations of rule application
using color diagrams, akin to what is done in the case of, e.g., cellular automata (cf. Wolfram
2002). A configuration of a Turing machine is represented by a sequence of colored squares,
where the first square represents the state of the Turing machine and is followed by a sequence

7. Since the focus of our paper is the principal limitation of pattern detection in ATP, we abstain from specifying
the technical details of ATP. Interested readers may consult the pertinent paper (Letz and Stenz 2001) and our
implementation for details (cf. section 4).

8. Our restriction to translations of deterministic splitting Turing machines into so-called Krom-Horn clauses
allows us to do this.



Explaining the undecidability of first-order logic 9

of colored squares representing the symbols on its tape. Different colors represent different
states and different symbols. A sequence of configuration is represented by a sequence of
sequences of colored squares. Similarly, we represent literals on a proof path with sequences
of colored squares: the first square represents the predicate of the literal and is followed by a
sequence of colored squares corresponding to the symbols (skolem-functions and variables)
at the corresponding argument positions of the predicate. If the last position is a number, this
number serves as a counter for initial literals and it is not represented in the color diagram. A
branch of the proof consists of a sequence of literals, which is represented as a sequences of
sequences of colored squares. For our purposes, it suffices to represent only the main branch of
maximal length in our deterministic tableau proofs. Therefore, we can omit the representation
of the negation sign, as only negated literals appear on this branch. In Figure 1, e.g., the
color diagram represents the main branch {¬P[sk1, sk1, 1],¬P[sk2, sk1, 3],¬P[sk2, sk1, 3]}:
each nth horizontal sequence of colored squares in the diagram corresponds to the n-literal of
the main branch, with the predicate represented by the first colored square and the symbols
at the argument positions of the predicate represented by the further colored patches. The
repetition of the literal ¬P[sk2, sk1, 3] in the main branch of Figure 1 is represented by a
sequence of colored squares in the second and third horizontal lines of the diagram.

Figure 1. Regularity in the narrow sense in ATP for (4)

Examples suggest that regularity in the narrow sense can be generalized to cases in which
the proof search runs in endless loops without repeating expressions in the narrow sense.
As Figure 2 illustrates for the simple clause (2) with only infinite models, the proof search
may encounter an obvious nesting scenario. We can identify a law that governs how the
sequence of formulas develops from the sequence alone, without considering the clauses or
instructions of the proof search algorithm. In this case, the sequence of inference steps is, in
fact, governed by a repeating pattern, albeit without strict repetition of the same expression.
The question is whether we can infer from the finite repetition of a pattern that it will repeat
endlessly. We will explain by counter-examples why this question has a negative answer.

There are, of course, more complicated cases of looping than the one shown in Figure 2,
and the proof search may become too messy for a human to identify any pattern at all.
However, this may be a problem that one may hope to overcome by means of translation into
other, more perspicuous notations, or it may be a problem of human pattern identification
capabilities that one may hope to overcome by means of machine learning. Thus, one may
strive for intricate pattern detection for endless loops in ATP. Our question is how to explain
why this endeavor is hopeless. Our philosophical motivation for this question is to explain
why a diagrammatic (or “iconic”) conception of logic that claims that logical properties, such
as provability, are reducible to pattern detection in a suitable notation fails when applied to



10 Timm Lampert & Anderson Nakano

Figure 2. Regularity in the broad sense in ATP for (2)

the whole realm of FOL (cf. Lampert 2018, for details about this diagrammatic (or iconic)
conception of logic, which is based on insights from Wittgenstein’s early work). We maintain
that this conception works only for normal form transformations of fragments of FOL (see
p. 6 above); we intend to show that and explain by counter-examples why the reducibility
claim is incorrect when applied to a general proof search in FOL.

We designate a purported general decision criterion referring to a finite part of a com-
putable sequence, wherein this finite part repeats a pattern, as a “loop criterion”. This criterion
is employed to justify an inference from finite repetitions to endless repetitions and, thus,
to determine unprovability. It generalizes the regularity criterion. We aim to answer the
following question by providing concrete examples: Why is it impossible to generalize the
regularity criterion to correctly determine unprovability by means of a general loop criterion
in a complete and automated proof search?

To our knowledge, this question has not been raised in the literature thus far. We shall
address this question by considering a simple undecidable class of FOL formulas, namely,
the ones which can be expressed as a set of Krom–Horn clauses. Krom–Horn clauses are
clauses with at most two members, with at most one being non-negated. Specifically, we
will consider only sets of Krom–Horn clauses derived from translations of so-called splitting
Turing machines (STMs). We specify STMs for the purpose of making evident the limitations
of a decision criterion specified in terms of a loop criterion. By translating STMs into a
special sort of Krom–Horn clauses, we can demonstrate how the halting problem for STMs
transforms into the decision problem for the corresponding Krom–Horn clauses. Although
the deterministic proof search for Krom–Horn clauses will mirror the behavior of STMs,
our approach does not involve expressing STMs in FOL (as is usually done in undecidability
proofs), nor do we employ diagonalization or any axioms (theory) in addition to the pure
translation of the input and instructions of STMs. Instead, we mimic the execution of
deterministic STMs via a deterministic proof search to show the impossibility of specifying a
general criterion for detecting endless loops within an exhaustive proof search in FOL. Our
discussion will not only dispense with the diagonal method in combination with hypothetical
(counterfactual) reasoning, but will also abstain from expressing Turing machines by means of



Explaining the undecidability of first-order logic 11

FOL formulas in relation to their intended interpretation. Rather, it will be purely syntactic
and, thus, demonstrable through our implementation of the translation and proof search
procedures. In fact, the translations of STMs to Krom-Horn clauses will merely serve as a
heuristic to generate Krom-Horn clauses with certain logical properties which can also be
proven independent of their relation to STMs.

3. From the halting problem to the Entscheidungsproblem
We begin by introducing STMs and explain why an endeavor to solve the halting problem
for STMs based on patterns in their evolution is futile (section 3.1). As the main content
of our paper, we then show how this explanation transfers to the Entscheidungsproblem by
considering a proof search for clauses with skolemization (section 3.2).

3.1 Splitting Turing Machines
An STM, or splitting Turing machine, is an automaton equipped with a circular tape con-
sisting of cells that can be split. The specifications and behavior of STMs are defined as
follows:

Def. (Splitting Turing Machine, STM): An STM is described by a tuple S = (Q,Σ, f , q1,
qf , cn), where Q and Σ are the finite sets of states and tape symbols, respectively; q1 ∈ Q
is the initial state; qf ∈ Q is the halting state; cn is the initial tape of size n that defines the
symbols for all n initial positions of the machine; and the transition function f is defined
for all q ∈ Q, except qf , and for all read symbols σ.9

We write f as a list of transition rules. Each rule is expressed as a quadruple t = (qx,σ, v, qy),
with initial state qx, read symbol σ, instruction v, and next state qy. The possible instructions
are as follows:

Ws: write the symbol s, s ∈ Σ;
S: split the current cell, duplicating its content on the right (clockwise) of the current cell;
L: move the scanner counterclockwise;
R: move the scanner clockwise.

STMs are universal machines because they can simulate clockwise Turing machines
(CTMs), which are universal; (cf. Neary and Woods 2009, pp.107-109).10 Therefore, if the
halting problem is solvable for STMs, then it is solvable for all Turing machines.

It is a well-known fact that even Turing machines of minimal complexity can generate
rather irregular sequences in their evolution; cf., e.g., Figure 3 for the 5-state, 3-symbol STM
described by (5) (the color diagram evolves from left to right, cf. p. 9 for the explanation of
color diagrams for Turing machines).

One might wonder whether seemingly irregular sequences already indicate that a decision
procedure based on pattern detection for identifying endless looping is futile. However,

9. For simplicity, the definition may omit specifying the value of f for pairs of states and symbols that are never
reached.

10. Demonstrating that CTMs can be simulated by STMs is straightforward. Essentially, CTMs are automata that
move to the right after every instruction and either write one symbol on the tape or split one cell of the tape and
write two symbols in the split cells. These operations are all available in STMs.



12 Timm Lampert & Anderson Nakano

Table 2. A 5-state, 3-symbol STM inducing the irregular color diagram in Fig. 3

Q: {P, Q1, Q2, Q3, H}, q1 : P, qf : H,

Σ: {0, 1, 2},

f :
{{P, 1, {L}, P}, {P, 0, {W , 1}, Q1}, {P, 2, {R}, Q3}, {Q1, 1, {R}, Q2},

{Q1, 0, {R}, Q2}, {Q2, 1, {W , 0}, Q1}, {Q2, 2, {L}, P}, {Q3, 1, {S}, Q1}},

c2: {1, 2}.

(5)

Figure 3. Color diagram of the evolution of the STM (5) over 150 steps

regularity depends on notation. A different notation may well enhance the possibility
of solving decision problems11, e.g., by converting irregular sequences into regular ones.
Approximating a number by means of different sequences in different notations, which can
be translated into each other, is one example of this; cf. Table 1. Take the example of square
roots: while their representations in decimal notation might not exhibit a discernible pattern,
their regular continued fractions demonstrate periodicity, allowing for easier identification.
Similarly, one could argue that by translating the irregular sequence generated by an STM
into a regular one through notation transformation, a recognizable pattern might emerge.
Our approach of translating STMs into clauses or FOL formulas, and subsequently generating
sequences of inference steps by applying a logical calculus, allows us to explore the relations
between sequences in different notations with respect to the resulting patterns. The normal
form transformations employed to solve decision problems for fragments of FOL, as discussed
earlier (cf. p. 6), illustrate how the ability to solve decision problems in logic depends on
a notation that may reveal logical properties in the form of common patterns. From the
practical standpoint of a software engineer, one might also wonder whether machine learning
could outperform humans and gain the ability to decide problems (at least to a reliable degree)
by learning from patterns in a training database.

However, it can be demonstrated through a representative example that attempting to
solve the halting problem based on patterns of STM sequences or to solve the Entschei-
dungsproblem based on patterns of sequences of inference steps is futile, irrespective of the
extent to which irregular sequences can be transformed into regular ones. We can demon-
strate this by considering regular instead of irregular sequences, i.e., by considering cases
in which a pattern is indeed found. We first do this for sequences computed by STMs and
the question of solving the halting problem and then ask whether the same approach can
be extended to sequences in ATP and the Entscheidungsproblem. Thus, we do not explain
undecidability due to the lack of detectable patterns in unsuitable notations. Instead, we
explain undecidability due to the impossibility of distinguishing properties such as halting /
non-halting in the case of STMs and refutability / satisfiability in the case of FOL despite of
the identification of patterns.

11. Cf. (Lampert 2020) for a general discussion of this claim.



Explaining the undecidability of first-order logic 13

Our example, in which STM1 and STM2 are specified as shown in Table 3 and their
color evolution diagrams are presented in Figure 4, demonstrates that mere repetition of a
regular pattern is not sufficient to decide that a Turing machine is nonhalting. STM2 differs
from STM1 solely by the replacement of one of the halting instructions with a nonhalting
instruction. Their evolution diagrams remains identical for the initial 78 steps, encompassing
a complete repetition of a regular pattern. However, STM1 halts in the next step, while
STM2 continues forever in a regular manner.

Table 3. STM1 (halting) and STM2 (not halting), differing by one instruction

Q: {P, P1, P2, P3, P4, H}, qi : P, qf : H,

Σ: {1, 2, 3, 4},

f :

{{P, 1, {W , 2}, P1}, {P, 2, {R}, P}, {P, 3, {R}, P4},

STM1:{P, 4, {W, 4},H}, STM2:{P, 4, {W, 4},P1},

{P1, 1, {R}, P1}, {P1, 2, {R}, P1}, {P2, 3, {R}, P}, {P1, 4, {R}, P},

{P2, 1, {R}, P2}, {P2, 2, {W , 1}, H}, {P2, 3, {R}, H}, {P2, 4, {R}, P3},

{P3, 1, {S}, P}, {P3, 2, {S}, H}, {P3, 3, {R}, H}, {P3, 4, {W , 1}, H},

{P4, 1, {R}, P4}, {P4, 2, {W , 1}, P4}, {P4, 3{R}, P2}, {P4, 4, {R}, P4}},

c5: {1, 3, 1, 1, 4}.

Figure 4. Color diagrams for STM1 and STM2 up to 100 steps

It is easy to describe the difference of the functions that the instructions of STM1 and
STM2 implement. Both take as input two sequences of 1s, a and b, separated by the symbols
3 and 4. While a increments by 1 in each iteration, b remains constant. STM1 halts when
a > b, whereas STM2 goes on with incrementing a forever. Yet, describing the implemented
functions does not amount to provide a general decision criterion for distinguishing finite
from infinite loop processes. Recall that, from the point of view of metalogic, it is possible to
mechanically decide for any members of an arbitrary finite set of STMs (that may well include
STM1 and STM2) whether they halt or do not halt, cf. p. 5. It is even possible to devise an
algorithm that decides, for an infinite set of STMs that includes STM1 and STM2, whether
its members halt or do not halt. This can be done by considering special forms of machines,
e.g., machines that implement Do-until loops that do not modify the loop counter during
the loop, but only increment or decrement the counter after each loop until a certain value is
reached and, additionally, each single loop is known to end after a finite number of steps. Yet,



14 Timm Lampert & Anderson Nakano

what is in question is a decision criterion that applies to all STMs, thereby distinguishing
finite from infinite loop processes in general, solely based on detecting repeating patterns,
regardless of an upper bound on loop iterations. This becomes imperative when dealing with
STMs featuring While-loops where termination hinges not on reaching a predefined counter
but on satisfying a specific condition. Our pair of machines, STM1 and STM2, epitomizes
the fundamental challenge of formulating a general criterion for escaping a loop by pattern
detection. Unlike the counterfactual diagonal case, such a pair comprises concrete STMs,
which enables the translation of the problem to a factual pair of expressions within FOL and
its illustration by real automated proof search.

In investigating sequences, we assume that it is possible to identify mechanically loops
that repeat a certain pattern. In the case of STM1 and STM2, e.g., the looping process starts
from configurations differing solely in the increasing number of 1s in the first sequence a of
1s. Within each iteration of the loop, the same instructions are applied in the same order,
with only the number of applications of these instructions varying in each repetition due to
the increasing nesting. A universal machine can identify the looping process by detecting the
successive increase of nesting and the repeating succession of rule applications resulting from
it. Given these assumptions, the question arises whether it is possible to infer non-halting
behavior from the identification of a looping process.

Pairs of STMs such as STM1 and STM2 show that and explain why the answer to this
question is negative. These machines share a looping process; yet, while STM1 escapes the
loop and halts, STM2 repeats the looping process endlessly. All of the halting instructions in
both STM1 and STM2, except the one absent in STM2, are irrelevant as their conditions will
never be met. STM2 does the same as STM1 with the only difference being that it continues
its execution after each comparison of the increasing number a with b. A loop criterion is
refuted by the fact that, by simply redefining a relevant instruction where a halting condition
will be satisfied, one can specify a machine that behaves likewise but continues its execution
while the original halts. Clearly, examples such as STM1 and STM2 can be extended to an
arbitrary number of pairs of halting and nonhalting machines by redefining relevant halting
instructions.

Our refutation implies that STM2 can no longer be decided as nonhalting according
to a pure loop criterion that is based on nothing but the detection of a pattern within a
finite part of a computable sequence. Note that, by increasing the second number b against
which the first number a is compared, we can arbitrarily increase the number of repetitions
executed before STM1 comes to a halt. Therefore, a loop criterion cannot be rescued by
merely increasing the number of repetitions under consideration.

We do not refute a loop criterion by objecting that it may be challenging to identify
patterns in a suitable notation. Instead, our refutation stems from the fact that such a criterion
fails to provide a sufficient condition for nonhalting when loops can be mechanically identified.
In what follows, our aim is to extend this straightforward refutation of the validity of a loop
criterion for solving the halting problem to the attempt of applying such a criterion to solve
the Entscheidungsproblem within ATP. In this context, it is not equally straightforward to see
the failure of a loop criterion when employed as a general decision criterion. Since regularity
and decidability depend on notation, refuting a loop criterion for sequences generated by
STMs does not immediately imply refuting it for ATP. To establish this, we must demonstrate
how the (trivial) impossibility of solving the halting problem based on a loop criterion can



Explaining the undecidability of first-order logic 15

be transposed to show the (nontrivial) impossibility of solving the Entscheidungsproblem based
on a loop criterion.

Furthermore, proofs are typically examined in logic without considering their relation
to the execution of Turing machines. One may even harbor reservations concerning the
endeavor to overload FOL formulas with interpretations that go beyond a pure proof-theoretic
point of view. Consequently, one may be inclined to abstain from expressing Turing machines
by means of FOL formulas by making use of interpretations ℑ of FOL-expressions intending
to capture the states, the tape and the instructions of TMs.12 To circumvent these reservations,
we will show in the following that and how the impossibility of specifying a loop criterion for
the halting problem can be extended to the impossibility of doing this within ATP without
expressing STMs within the language of FOL. Instead, we will show how to mimic the
behavior of STMs in a deterministic proof search for the rather simple case of Krom–Horn
clauses.

3.2 ATP-search
We proceed to show how our explanation of the invalidity of a loop criterion as a decision
criterion for the halting problem can be extended to establish the unsolvability of the decision
problem for FOL by employing a loop criterion. For this sake, we specify an ATP-search
that emulates the behaviour of STMs. This can be accomplished by utilizing the well-known
ATP-search within a tight connection tableau calculus, which is identical to an ATP-search
in the also well-known linear resolution calculus for the special case of Krom-Horn clauses
that we consider, cf. footnote 13. The crucial point is that the ATP-search, in fact, produces
repeating patterns in terms of regularity not only in the narrow but also in the broad sense.
Thus, we demonstrate that increasing complexity through the endless iterative application of
inference rules, which is a necessary feature of any complete calculus for FOL, cannot be
circumvented by a loop criterion, even in the case where the ATP-search generates discernible
repeating patterns that would enable the application of such a criterion. Note that mimicking
the behaviour of TMs by ATP-search is not a trivial task: Our translation of STMs into
Krom-Horn clauses is tailored to specifically emulate the behaviour of a certain type of TMs
by a particular ATP-search. Different types of TMs (e.g., those without splitting cells), other
notations of FOL-expressions (e.g., without skolemization) and other correct and complete
calculi (e.g., those requiring iterative application of ∧I) may well render the application of
a loop criterion impractical, if not impossible. In these cases, decidability through pattern
detection is thwarted due to the absence of discernible or repeated patterns. However, this is
a feature of notation that one can hope to overcome by the reduction to proper notations
and calculi. We show that even in the case of such a reduction, a loop criterion remains
unreliable.

Let us first enumerate the elements we will use for representing the machine and the
contents of its tape:

1. A Skolem constant skG.
2. A Skolem constant sks for every s ∈ Q.
3. A unary Skolem function ska for every a ∈ Σ.

12. Cf. (Lampert 2020), section 5, which criticizes semantic versions of undecidability proofs of FOL. Our purely
syntactic version of mimicking the behavior of STMs circumvents these concerns entirely.



16 Timm Lampert & Anderson Nakano

4. A predicate letter Ps with arity n + 1 for an STM with n initials cells for every s ∈ Q.
5. Some auxiliary predicate letters, to be defined below.

An STM in a certain state and with certain symbols written on its tape will be represented
by a literal (i.e. an atomic formula or its negation) as follows: the different states of the
machine will be represented by different predicate letters (and, additionally, by different
Skolem constants, see 2 above; this redundancy is introduced merely for simplicity); the
tape of the machine will be represented by the arguments of the predicates, with the first
argument representing the position of the scanner of the machine; the different symbols
that may be written on the tape of the machine will be represented by different Skolem
functions; finally, the potentially infinite nature of the tape (due to the splitting operation)
will be represented by the potentially infinite nesting of these Skolem functions. The Skolem
constant skG marks the end (the “ground”) of nesting.

From here on, we will employ the metavariable α to represent variables that run through
the values of Σ and the metavariable β to represent variables that run through the values of
Q. Additionally, we stipulate that the first argument of the predicates will always represent
only a single cell in the machine. The reason for this stipulation is merely practical.

We assume that the tape is initially filled with s1, s2, · · · , sn, where all si ∈ Σ. Given that
we utilize the tight connection calculus beginning with a single negated literal, cf. p. 8, our
initial clause contains only one negated literal and our clauses of length 2 will start with
a positive and end with a negated literal. The initial clauses of the FOL formula in clause
normal form are as follows:

{¬Faux0[skG, ..., skG]} (6)

{Faux0[x1, . . . , x1],¬Pq1[sks1 (x1), sks2 (x1), . . . , sksn (x1), skG]}. (7)

The arity of Faux0 is n, i.e. the number of initial cells. Note that the tape, which is of
size n, is represented by n + 1 arguments in predicate letters Ps such as Pq1 . The (n + 1)-th
argument will always be skG, which is useful for the specification of Rule R below.

The ATP-search starts by deriving ¬Pq1[sks1 (skG), sks2 (skG), . . . , sksn (skG), skG] from (6)
and (7). We could have simplified (6) and (7) to this literal. However, we want our clauses to
be easily translatable into pure FOL-expression without skolemization, cf. section 4. For this
sake, skolem functions should not occur within skolem-functions prior to substitutions in
the initial clauses, i.e. prior to substitution of variables during the application of inference
rules. For the same reason, we impose the general restriction that, in the clauses, the only
permissible argument for the Skolem functions ska for every a ∈ Σ is x1.

For the halting state qf , we add the following unit clause:

{Pqf [x1, ..., xn, skG]}. (8)

Let us now see which clauses are needed for every kind of transition rule. We assume
that the description of each rule is given in the format (qx,σ1, v, qy).

We will omit the translation of Rule L since it is analogous to Rule R and since we do
not need it in our examples or for our argument. Rules W and S are straightforward and
obviously yield a literal representing the resulting state and tape of the corresponding STM.



Explaining the undecidability of first-order logic 17

3.2.1 Rule W
Suppose that the symbol to be written is σ2. To represent Rule W, we simply add the
following clause:

{Pqx[skσ1 (x1), x2, x3, . . . , xn+1],¬Pqy[skσ2 (x1), x2, x3, . . . , xn+1]}. (9)

3.2.2 Rule S
To represent Rule S, we add the following clause:

{Pqx [skσ1 (x1), x2, x3, . . . , xn+1],¬FauxSσ1
[skσ1 (x1), x2, x3, . . . , xn+1, skqy ]}. (10)

Additionally, we include the following clauses in the set of clauses (these clauses are
included only once, not for every Rule S dictating the machine’s behavior):

{FauxSα[x2, x1, x3, . . . , xn+1, skβ],¬Pβ[x2, skα(x1), x3, . . . , xn+1]}. (11)

The rationale for the introduction of the auxiliary predicate letters FauxSα is that they
allow for the representation of the splitting of the cells while obeying the restriction that, in
the clauses, the only permissible argument for the Skolem functions ska for every a ∈ Σ is x1,
cf. p. 16.

3.2.3 Rule R
The specification of Rule R is considerably more intricate compared to Rules W and S. Let
us begin with an example to illustrate how mimicking this rule in a tight connection tableau
calculus unfolds. Imagine that at a given instant during the machine’s execution, its state qx
and the tape [1, 2, 3, 4, 5, 6] are represented by the following literal, which appears on a leaf
of a certain open branch of the tableau:

Pqx[sk1(skG), sk2(sk3(sk4(skG))), sk5(sk6(skG)), skG].

The idea is that at the end of the mimicking operations in the tableau, we shall obtain the
following literal on the leaf of this branch:

Pqy[sk2(skG), sk3(sk4(sk5(sk6(skG)))), sk1(skG), skG].

representing the tape [2, 3, 4, 5, 6, 1] and the machine in state qy. This evolution during the
application of the rules of the tableau calculus is designed to mimic the fact that the header of
the machine moves one position to the right on the tape, transitioning from the state qx to
the state qy.

To ensure that Rule R will be applied only if the scanned symbol is σ1, we include the
following clause:

{Pqx[skσ1 (x1), x2, x3, ..., xn+1},¬FauxR[skσ1 (x1), x2, x3, ..., xn+1, skqy]}. (12)

Now, we start moving the symbols to the right. Initially, we add the following clauses to
the set of clauses:



18 Timm Lampert & Anderson Nakano

{FauxR[x2, skα(x1), x3, . . . , xn+2],
¬Faux1α[skα(x1), x1, skG, x3, . . . , xn, x2, xn+1, xn+2]}.

(13)

The rationale for the arguments of Faux1α will only be made clear after the following
operations 1 to 4 are explained. We need to perform the following operations with the
arguments of Faux1α to represent the tape after the execution of the rule:

1. Set the first argument to skα(skG) (for the particular value of α in question).
2. Pop the represented symbols on the tape contained in x1 (second position of Faux1α ),

push them over the third position, and finally remove the second position.
3. Pop the inverted x1 obtained in operation 2 above and push these symbols over x3 to put

them in the right order, again removing the second position.
4. Use the last argument of Faux1α , which stores the next state, to finally construct the

correct predicate letter.

Regarding clauses (13)–(21), and unlike clause (12) above, we anticipate that these clauses
do not need to be added for every Rule R. Instead, we include them only once.

To accomplish the first task, we include the following clauses:

{Faux1α [x2, x3, . . . , xn+3, x1, xn+4],¬Faux2[skα(x1), x3, . . . , xn+3, x1, xn+4]}. (14)

To accomplish the second task, we include the following clauses:

{Faux2[x2, skα(x1), x3, . . . , xn+4],¬Faux3α[x2, x1, x3, . . . , xn+4]} (15)

{Faux3α[x2, x3, x1, x4, . . . , xn+4],¬Faux2[x2, x3, skα(x1), x4, . . . , xn+4]} (16)

{Faux2[x1, skG, x2 . . . , xn+3],¬Faux4[x1, x2 . . . , xn+3]]}. (17)

The third task is similarly completed by including the following clauses:

{Faux4[x2, skα(x1), x3, . . . , xn+3],¬Faux5α[x2, x1, x3, . . . , xn+3]} (18)

{Faux5α[x2, x3, x1, . . . , xn+3],¬Faux4[x2, x3, skα(x1), . . . , xn+3]} (19)

{Faux4[x1, skG, x2 . . . , xn+2],¬Faux6[x1, x2 . . . , xn+2]}. (20)

Finally, to accomplish the fourth task, we include the following clauses:

{Faux6[x1, . . . , xn+1, skβ],¬Pβ[x1, . . . , xn+1]}. (21)

3.2.4 Mimicking the evolution of STMs
Applying the rules of our translation procedure to a given STM yields a set of Krom–Horn
clauses. The initial and final states are translated into clauses of length 1, while all instructions



Explaining the undecidability of first-order logic 19

are translated into clauses of length 2 with exactly one non-negated literal. Our presumed
complete ATP procedure based on tight connection tableau, initiated with clauses containing
only negated literals, makes it possible to mimic the execution of deterministic STMs via a
very simple deterministic ATP process. It starts with the initial clause, since this is the only
clause that contains only negated literals. Subsequently, there is precisely one expansion step
to be iteratively executed (this fact readily follows from inspection of the provided set of
clauses). Reduction steps, which do occur in a complete tableau proof search for the whole
realm of FOL, are absent in the complete tableau proof search for the special case of Krom-
Horn clauses. The proof search terminates if and only if the halting state is reached. Since
the proof procedure is deterministic, any proof is necessarily of minimal length. Incidentally,
the same is true for a proof search within the linear resolution calculus, which does not differ
significantly from the proof search in tableaux in the special case of Krom–Horn clauses.13

Although ATP mimics the evolution of STMs, there is no one-to-one correspondence
but rather a one-to-many correspondence between the steps of the STMs and the steps in our
tableau calculus. The primary reason for this is Rule R, which entails a pop–push process for
the Skolem functions in positions two and three of the predicates to achieve the correct order
of the arguments in the Skolem functions. However, one can compare the literals in the ATP
process following each translation of an instruction with the tape after the performance of
an instruction during STM execution. This can be seen, for example, by contrasting the
color diagrams of the STM sequences with those of the ATP process; see, e.g., Figure 4 and
Figure 5 (cf. p. 9 for the explanation of color diagrams).

The translation T(STM1) of STM1, which is a provable formula, differs by only one
literal in one clause from the translation T(STM2) of STM2, which is a satisfiable formula.
The automated proof of T(STM1) in tableaux takes 634 steps. Figure 5 shows the evolution
diagrams for T(STM1) and T(STM2), divided into three parts (the partial diagrams are meant
to be read from top to bottom). The outermost left partial diagram covers steps 1–96, while
the subsequent partial diagram encompasses steps 97–346 after the first splitting. The third
partial diagram shows steps 347–634 for T(STM1) after the second splitting, while the last
partial diagram depicts steps 347–640 for T(STM2) after the second splitting. The third
and fourth partial diagrams diverge only at step 634, which is the last step in the proof of
T(STM1), while the proof search for T(STM2) continues indefinitely. The patterns repeat
after each splitting, becoming more nested; this extends the pop–push processes without
causing new symbols to be written or new states to be entered relative to the previous
sequence of inference steps within one splitting period. Thus, similar to the computable
sequences of STM1 and STM2, the sequences of inference steps for T(STM1) and T(STM2)
share the same repeating pattern. However, this pattern endlessly repeats only in the proof
search for T(STM2). This demonstrates that the invalidity of the loop criterion for deciding
whether halting occurs in the case of STM1 and STM2 extends to the invalidity of deciding
provability for T(STM1) and T(STM2) based on a loop criterion for an automated proof
search within a tableau or resolution calculus.14

13. Full resolution reduces to binary resolution, factorization is not needed, the expansion rule and binary resolution
are identical in this case, and (Henschen and Wos 1974) have shown that linear input resolution is complete for Horn
clauses.

14. T(STM1) and T(STM2) each contain 79 clauses and thus are too long to be printed here. All automatically gener-
ated diagrams and translations from STM1 and STM2 can be viewed at github.com/TimmLampert/KromHornSolver.
The printed output of the color diagrams and their symbolic expressions is 125 and 133 pages long.

https://github.com/TimmLampert/KromHornSolver
http://www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/STM1.pdf
http://www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/STM2.pdf


20 Timm Lampert & Anderson Nakano

Figure 5. Color diagrams of the proof searches for T(STM1) and T(STM2), showing that although both are governed
by the same pattern before the proof search for T(STM1) terminates, only the proof search for T(STM2) continues
to repeat this pattern.



Explaining the undecidability of first-order logic 21

Since we can produce an arbitrary number of further pairs of STMs for this case, we can
also generate an arbitrary number of further pairs of provable and satisfiable formulas that
share a regular sequence of inference steps up to an arbitrary length. This demonstrates the
futility of specifying a loop criterion for ATP-search.

4. KromHornSolver
In contrast to metamathematical proof methods, such as the diagonal method, we base our
results on examples and computation. STMs and their automated translations into Krom–
Horn clauses are especially suited for explaining undecidability in terms of pattern detection
in ATP. To aid the visualization of our argument, we compute color diagrams instead of
printing complex symbolic expressions and proofs.

Our results are based on a Mathematica program called KromHornSolver, which we imple-
mented ourselves.15 This program not only conducts proof searches for clauses but also for
corresponding FOL-formulas without skolemization, which are generated from the clauses.
The ATP-proof search for those FOL-formulas is based on a different calculus that applies
the rule ∧I instead of the expansion rule prior to universal quantifier eliminations. Avoiding
skolemization makes it impossible to reproduce the repeating patterns of the evolution of
STMs in the case of splitting cells, thereby precluding the application of a loop criterion.
This occurs due to the fact that the splitting tape can no longer be represented by P-literals
with increasing nested skolem-functions but only by several P-literals dispersed among other
literals in different scopes of different quantifiers, which increase in number by the splitting
process. Consequently, there is no remaining main branch of an ATP-search with P-literals
corresponding to the evolution of the STM. Instead, the evolution of STMs is encoded in
a complex FOL-expression with literals not arranged in a regular sequence but distributed
across different scopes of different quantifiers. By implementing two different ATP-searchs
based on two different notation (with and without skolemization), we intended to underscore
the impact of notation and calculus on pattern detection.

The KromHornSolver takes an STM plus an upper bound for execution as its input. It then
performs the following steps:

Step 1: The array for the steps of the STM is generated its color diagram is printed.
Step 2: The STM is translated into clauses with Skolem functions and into a pure FOL

formula (without Skolem functions).
Step 3: The deterministic tableau is generated for the clauses and its color diagram is printed.
Step 4: The tableau proof is translated into a pure FOL formula encoding the corresponding

proof in proof search without skolemization and its color diagram is printed.
Step 5: Attempts to specify a loop criterion are checked.

Step 5 refuted the correctness of a loop criterion for the ATP-search for clauses with
skolemization, while the corresponding ATP-search for pure FOL-formulas without skolem-
ization does not allow for specifying a general loop criterion due to the lack of regular
sequences. In both cases, it becomes impossible to decide satisfiability by identifying repeat-
ing patterns.

15. This program is available at www.github.com/TimmLampert/KromHornSolver, and an implementation of it
can be accessed at www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/kromhornsolver.jsp.

https://github.com/TimmLampert/KromHornSolver
https://www2.cms.hu-berlin.de/newlogic/webMathematica/Logic/kromhornsolver.jsp


22 Timm Lampert & Anderson Nakano

5. Conclusion
Our main concern is to demonstrate that and to explain why the particular putative attempt to
solve the Entscheidungsproblem within given calculi and proof search algorithms by adding a
general loop criterion is futile, rather than proving in general that the Entscheidungsproblem is
unsolvable by any method. Our explanation is based on mimicking STM sequences in ATP.
However, this does not mean that our explanation hinges on the translation of STMs into
FOL. We merely use this translation method as a heuristic to generate pairs of sequences in
ATP that share a repeating pattern. Once these sequences are generated, the validity of a loop
criterion for an ATP-search yielding repeating patterns is directly refuted by the fact that
an infinite sequence for an unprovable formula and a finite sequence for a provable formula
contain the same repeating pattern.

Our discussion of the limits of a loop criterion can be seen as an instance of the general
insight that finite, regular parts of computable sequences lack an unambiguous continuation.
However, we argue that simply referring to this insight in a general context is insufficient
when discussing ATP. Instead, one must prove that and how such a general statement does
apply to the problem of specifying decision criteria within ATP via pattern detection. We
achieve this by employing the KromHornSolver and applying it to cases such as the translations
of STM1 and STM2 in our example. This approach allows us to illustrate and substantiate
the implications of the broader insight within the context of ATP.

References
Baaz, Matthias, Uwe Egly, and Alexander Leitsch. 2001. Normal Form Transformations. In Handbook of Automated

Reasoning Vol. I, edited by John Alan Robinson and Andrei Voronkov, 273–333. Amsterdam et al.: Elsevier /
MIT Press. https://doi.org/10.1016/B978-044450813-3/50007-2.

Börger, Egon, Erich Grädel, and Yuri Gurevich. 2001. The Classical Decision Problem. 2. printing of the 1. ed.
Universitext. Berlin: Springer.

Dreben, Burton, and Warren D. Goldfarb. 1979. The Decision Problem: Solvable Classes of Quantificational Formulas.
Reading, Mass: Addison-Wesley.

Henschen, L., and L. Wos. 1974. Unit Refutations and Horn Sets. J. ACM 21 (4): 590–605. https://doi.org/10.1145/
321850.321857.

Lampert, Timm. 2017. A Decision Procedure for Herbrand Formulae without Skolemization. https://doi.org/10.48550/
arXiv.1709.00191.

Lampert, Timm. 2018. Iconic Logic and Ideal Diagrams: The Wittgensteinian Approach. In Diagrammatic Represen-
tation and Inference, edited by Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz, and
Francesco Bellucci, 624–639. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-
91376-6_56.

Lampert, Timm. 2020. Decidability and Notation. Logique et Analyse 251:365–386. https://doi.org/10.2143/LEA.
251.0.3288645.

Lampert, Timm, and Anderson Nakano. 2020. Deciding Simple Infinity Axiom Sets with One Binary Relation by
Means of Superpostulates. In Automated Reasoning, edited by Nicolas Peltier and Viorica Sofronie-Stokkermans,
201–217. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-51074-9_12.

Letz, Reinhold, and Gernot Stenz. 2001. Model Elimination and Connection Tableau Procedures. In Handbook of
Automated Reasoning, 2015–2114. Elsevier. https://doi.org/10.1016/B978-044450813-3/50030-8.

Neary, T., and D. Woods. 2009. Four Small Universal Turing Machines. Fundamenta Informaticae Vol. 91 (nr 1):
123–144.

Nonnengart, Andreas, and Christoph Weidenbach. 2001. Computing Small Clause Normal Forms. In Handbook
of Automated Reasoning, edited by Alan Robinson and Andrei Voronkov, 335–367. Amsterdam: Elsevier.
https://doi.org/10.1016/B978-044450813-3/50008-4.

https://doi.org/10.1016/B978-044450813-3/50007-2
https://doi.org/10.1145/321850.321857
https://doi.org/10.1145/321850.321857
https://doi.org/10.48550/arXiv.1709.00191
https://doi.org/10.48550/arXiv.1709.00191
https://doi.org/10.1007/978-3-319-91376-6_56
https://doi.org/10.1007/978-3-319-91376-6_56
https://doi.org/10.2143/LEA.251.0.3288645
https://doi.org/10.2143/LEA.251.0.3288645
https://doi.org/10.1007/978-3-030-51074-9_12
https://doi.org/10.1016/B978-044450813-3/50030-8
https://doi.org/10.1016/B978-044450813-3/50008-4


Explaining the undecidability of first-order logic 23

Turing, A. M. 1937. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the
London Mathematical Society 42 (series 2) (1): 230–265. https://doi.org/10.1112/plms/s2-42.1.230.

Wolfram, Stephen. 2002. A New Kind of Science. Champaign, IL: Wolfram Media. http://www.wolf ramscience.
com/nks/ accessed January 16, 2023.

https://doi.org/10.1112/plms/s2-42.1.230
http://www.wolframscience.com/nks/
http://www.wolframscience.com/nks/

	Introduction
	Expounding the question
	From the halting problem to the Entscheidungsproblem
	Splitting Turing Machines
	ATP-search
	Rule W
	Rule S
	Rule R
	Mimicking the evolution of STMs


	KromHornSolver
	Conclusion
	References

