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Abstract
Quantum geometry on a discrete set means a directed graph with a
weight associated to each arrow defining the quantum metric. How-
ever, these ‘lattice spacing’ weights do not have to be independent
of the direction of the arrow. We use this greater freedom to give a
quantum geometric interpretation of discrete Markov processes with
transition probabilities as arrow weights, namely taking the diffusion
form ∂+f = (−∆θ + q − p)f for the graph Laplacian ∆θ, potential
functions q, p built from the probabilities, and finite difference ∂+ in
the time direction. Motivated by this new point of view, we intro-
duce a ‘discrete Schrödinger process’ as ∂+ψ = ı(−∆+ V )ψ for the
Laplacian associated to a bimodule connection such that the discrete
evolution is unitary. We solve this explicitly for the 2-state graph,
finding a 1-parameter family of such connections and an induced ‘gen-
eralised Markov process’ for f = |ψ|2 in which there is an additional
source current built from ψ. We also mention our recent work on the
quantum geometry of logic in ‘digital’ form over the field F2 = {0, 1},
including de Morgan duality and its possible generalisations.

Keywords
logic, noncommutative geometry, digital geometry, quantum gravity,
duality, power set, Heyting algebra.
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1. Introduction

These are notes growing out of a conference in Kraków with
the wonderful question “Is logic physics?”. My view is yes,

obviously. Indeed, I have long proposed (Majid, 1991) to think of
Boolean algebras as the ‘simplest theory of physics’, in which case
we should be able to see how physical and geometric issues in more
advanced theories emerge from structures already present there. If so,
then we can see the origin of physics in the very nature of language
and the structure of mathematical and physical discourse, a philosophy
that I have espoused as relative realism (Majid, 2012; 1991; 2015;
2014).

One of the things particularly to be explored in this way is the
evident role of entropy in the Einstein equations and its deep link
with gravity as an ingredient of quantum gravity. My proposal is that
while we may not be able to address this in quantum gravity itself,
we can try to move quantum gravity ideas back to simplified settings
such as finite graphs (Majid, 2019a) and Boolean algebras or digital
geometry (Majid and Pachoł, 2020a; Majid, 2020a) and see if it can be
addressed there. The present paper is a step in this direction towards
entropy and gravity: we see how probability and irreversible processes
can be seen naturally as emerging from quantum geometry.

Our main new results are in Section 3 in the context of graphs,
working over C and R. The idea is to explore a curious feature of
quantum geometry applied in the discrete case, namely that the lattice
‘square length’ x→ y need not be same as for y → x. In usual lattice
geometry, we would be focussed on the edge-symmetric case where
these coincide. I will argue that the asymmetric generalisation is the
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natural setting for probability and non-reversible processes. Thus, we
consider a Markov process

fnew(x) =
∑
y→x

py→xf(y) + (1− p(x))f(x),

where px→y denote the conditional transition probability from x to
y and p(x) =

∑
y:x→y px→y for each x. If we let ∂+ be the finite

difference on Z as the ‘discrete time’ then the Markov process appears
as

∂+f = −∆f + (q − p)f,

where q(y) =
∑

x:x→y px→y and ∆ is the canonical graph Laplacian
associated to a (typically degenerate) metric inner product defined by
the px→y, in which context it is natural that the value for x→ y need
not be the same as for y → x. In fact, the quantities that we should
really think of more geometrically as ‘length’ are the negative logs
λx→y of the probabilities, then the shortest length path in that sense is
indeed the path of maximum probability. Moreover, the shortest length
between two points then makes the space into a Lawvere metric space
(Fong and Spivak, 2019). Our point of view is that this is not so much
a ‘generalisation’ as what naturally arises in quantum geometry for
a discrete space; the real question is why distances are not direction
dependent in the continuum limit. Indeed, it could be argued that
many processes are irreversible, so already time between events is
measured in a directed way. In the present context, this is reflected
slightly differently in our probabilistic interpretation of ‘distance’ as
conditional transition probabilities.

Finally, our point of view leads us to introduce a ‘discrete
Schrödinger’s process’

∂+ψ = ı(−∆+ V )ψ
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and to ask what connections∇ are ‘unitary’ in the sense that f = |ψ|2
remains a probability density when we use the associated Lapla-
cian. We find (see Proposition 3.2) that the discreteness results in
the evolution of f being a generalised Markov process coupled to a
probability current source. Indeed, the discrete Schrödinger process
being unitary is reversible, so the irreversibility of the Markov pro-
cess on f is compensated by this source. We construct such a unitary
Schrödinger process explicitly for a 2-state graph • ←→ •, finding
a 1-parameter family of suitable connections. Unitary matrices are
the essence of quantum computing and what we have done is to con-
struct a certain family of them quantum geometrically in the spirit of
Schrödinger’s equation. Another motivation is the recent formulation
of ‘quantum geodesics’ (Beggs, 2020; Beggs and Majid, 2019) which
indeed includes the actual Schrödinger’s equation of ordinary quan-
tum mechanics. This work is not immediately applicable due to our
current use of discrete time, but these ideas should tie up in future
work.

We will use and make reference to a modern constructive ‘quan-
tum geometry’ formalism briefly outlined in Section 2; see (Beggs
and Majid, 2020) for details and the extensive literature cited therein.
This approach starts with a unital algebra A and choice of differen-
tial structure (Ω1,d) on it and then proceeds to metrics, connections,
curvature and so forth. Growing out of many years experience with
quantum groups but in no way limited to them, it is very different in
flavour from the well-known approach of A. Connes (Connes, 1994)
coming out of cyclic cohomology and ‘spectral triples’ as abstract
‘Dirac operators’, though with the possibility of useful interaction
between the approaches (Beggs and Majid, 2017).

Another aspect of the constructive approach is that it works over
any field, which makes possible the ‘digital’ case by working over the
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Figure 1: Quantum gravity and quantum mechanics/computing mediated by
quantum geometry over C. Digital geometry as a limiting case.

field F2 = {0, 1} of two elements (Bassett and Majid, 2020; Majid
and Pachoł, 2018; 2020a) and allows in principle the transfer of geo-
metric ideas to digital electronics, see Figure 1. A brief overview is in
Section 4 with some modest new results for the quantum geometry
of A =M2(F2). In the same vein, one could in theory put something
like a digital wave operator for a black hole background onto a silicon
chip. A motivation here is again from quantum computing. While in
quantum computing, a gate is replaced by a unitary operator (which in
turn we envisage could be constructed quantum geometrically, e.g. by
a Schrödinger process), the essential feature here is the use of vector
spaces (the superposition principle) to massively parallelise computa-
tions. However, linear algebra works over any field. Hence, if we build
our gates quantum geometrically then we could specialise them over
other fields, including over F2 as ‘digital quantum computing’. Even
if this did not have the speed benefits of actual quantum computing, it
would provide conventionally realisable training wheels for the real
thing.
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2. Outline of quantum geometry

It is well-known that classical geometry can be formulated equiva-
lently in terms of a suitable algebra of functions on the space. The
idea in noncommutative or ‘quantum’ geometry is to allow this to be
any algebra A with identity as our starting point (and now no actual
space need exist). We replace the notion of differential structure on
a space by specifying a bimodule Ω1 of differential forms over A. A
bimodule means we can multiply a ‘1-form’ ω ∈ Ω1 by ‘functions’
a, b ∈ A either from the left or the right and the two should associate
according to

(1) (aω)b = a(ωb).

We also need d : A→ Ω1 an ‘exterior derivative’ obeying reasonable
axioms, the most important of which is the Leibniz rule

(2) d(ab) = (da)b+ a(db)

for all a, b ∈ A. We usually require Ω1 to extend to forms of higher
degree to give a graded algebra Ω = ⊕Ωi (where associativity extends
the bimodule identity (1) to higher degree). We also require d to
extend to d : Ωi → Ωi+1 obeying a graded-Leibniz rule with respect
to the graded product ∧ and d2 = 0. This ‘differential structure’ is
the first choice we have to make in model building once we fixed the
algebra A. We require that Ω is generated by A,dA as it would be
classically. Next, on an algebra with differential, we define a metric
as an element g ∈ Ω1 ⊗A Ω1 which is invertible in the sense of a map
( , ) : Ω1 ⊗A Ω1 → A that commutes with the product by A from the
left or right and inverts g in the sense

(3) ((ω, )⊗A id)g = ω = (id⊗A ( , ω))g
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Figure 2: Some axioms of quantum Riemannian geometry. In order: invert-
ibility of a metric, tensor product bimodule connection, Riemann curvature
and Ricci curvature tensor and scalar. Diagrams are read down the page as a
series of compositions.

for all 1-forms ω. This is shown in Figure 2. In the general theory,
one can require quantum symmetry in the form ∧(g) = 0, where we
consider the wedge product on 1-forms as a map ∧ : Ω1 ⊗A Ω1 →
A and apply this to g. However, we don’t need to require this and
moreover we can also work with g non-invertible or ( , ) degenerate.

Finally, we need the notion of a connection. A left connection on
Ω1 is a linear map ∇ : Ω1 → Ω1 ⊗A Ω1 obeying a left-Leibniz rule

(4) ∇(aω) = da⊗A ω + a∇ω

for all a ∈ A,ω ∈ Ω1. This might seem mysterious but if we think
of a map X : Ω1 → A that commutes with the right action by A
as a ‘vector field’ then we can evaluate ∇ as a covariant derivative
∇X = (X ⊗A id)∇ : Ω1 → Ω1 which classically is then a usual
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covariant derivative on Ω1. There is a similar notion for a connection
on a general ‘vector bundle’ expressed algebraically. Moreover, when
we have both left and right actions of A forming a bimodule, as we do
here, we say that a left connection is a bimodule connection (Dubois-
Violette and Michor, 1996; Beggs and Majid, 2014), if there also
exists a bimodule map σ such that

(5) σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1, ∇(ωa) = (∇ω)a+ σ(ω ⊗A da)

for all a ∈ A,ω ∈ Ω1. The map σ, if it exists, is unique, so this is
not additional data but a property that some connections have. The
key thing is that bimodule connections extend automatically to tensor
products as

(6) ∇(ω ⊗A η) = ∇ω ⊗A η + (σ(ω ⊗A ( ))⊗A id)∇η

for all ω, η ∈ Ω1, so that metric compatibility now makes sense as
∇g = 0. This is shown in Figure 2. A connection is called QLC or
‘quantum Levi-Civita’ if it is metric compatible and the torsion also
vanishes, which in our language amounts to ∧∇ = d as equality of
maps Ω1 → Ω2. Given a metric inner product ( , ) and a connection
∇, one has divergence and geometric Laplacian

(7) ∇ · ω = ( , )∇ω, ∆a = ( , )∇da

for all ω ∈ Ω1, a ∈ A.
We also have a Riemannian curvature for any connection,

(8) R∇ = (d⊗A id− id ∧∇)∇ : Ω1 → Ω2 ⊗A Ω1,

where classically one would interior product the first factor against a
pair of vector fields to get an operator on 1-forms. Ricci requires more
data and the current state of the art (but probably not the ultimate way)
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is to introduce a lifting bimodule map i : Ω2 → Ω1 ⊗A Ω1. Applying
this to the left output of R∇, we are then free to ‘contract’ by using
the metric and inverse metric to define Ricci ∈ Ω1 ⊗A Ω1 (Beggs
and Majid, 2017). This is also shown in Figure 2.

Finally, and critical for physics, are unitarity or ‘reality’ proper-
ties. We mainly work over C and assume that A is a ∗-algebra (real
functions, classically, would be the self-adjoint elements). We require
this to extend to Ω as a graded-anti-involution (so reversing order with
an extra sign when odd degree differential forms are involved) and to
commute with d. ‘Reality’ of the metric and of the connection in the
sense of being ∗-preserving are imposed as (Beggs and Majid, 2014;
Beggs and Majid, 2017)

(9) g† = g, ∇ ◦ ∗ = σ ◦ † ◦ ∇; (ω ⊗A η)† = η∗ ⊗A ω∗,

where † is a natural ∗-operation on Ω1 ⊗A Ω1. These ‘reality’ condi-
tions in a self-adjoint basis (if one exists) and in the classical case
would ensure that the metric and connection coefficients are real.

In the case where there exists θ ∈ Ω1 such that da = [θ, a], one
says that the calculus is inner. Similarly, with graded-commutator
in higher degree. This is never possible in the classical case but is
rather typical in the quantum case. One then has that any bimodule
connection ∇ has the form (Majid, 2013)

∇ω = θ ⊗ ω − σ(ω ⊗ θ) + α(ω)

for some bimodule maps σ, α. A canonical (but not classical) choice
is σ = α = 0 in which case

∇θ = θ⊗, T∇θ
= −( ) ∧ θ, R∇θ

= θ2∧, ∇g = θ ⊗ g
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so that this connection cannot be Levi-Civita for a nontrivial exte-
rior algebra or nontrivial metric. Nevertheless, it defines a canonical
divergence and canonical Laplacian according to (7), namely

∇θ · ω = (θ, ω), ∆θa = (θ,da) = −(da, θ) + [(θ, θ), a]

which we will use in Section 3 (note that the latter is ∆θ/2 in the
conventions of (Majid, 2013; Beggs and Majid, 2020)). Finding actual
QLCs is a much more involved problem and usually results in a
moduli space of ∇ rather than a unique one.

3. Asymmetric discrete geometry
andMarkov processes

We are interested in the case A = k(X) of functions on a discrete set
X with values in a field k. Here we necessarily have Ω1 = spankωx→y

with basis labelled by the edges of a graph on X. The bimodule
structure and exterior derivative are

f.ωx→y = f(x)ωx→y, ωx→y.f = f(y)ωx→y,

df = [θ, f ] =
∑
x→y

(f(y)− f(x))ωx→y,

where θ =
∑

x→y ωx→y. By definition, we don’t include self-arrows
in the graph (but it can be useful to extend the graph to allow them).
We assume that our graph is bidirected in the sense that if x→ y is
an arrow then so is y → x. In this case, we can define a metric inner
product ( , ) : Ω1 ⊗A Ω1 → A as the bimodule map

(ωx′→y′ , ωy→x) = δx′,xδy′,ypy→xδx,

for some metric weights py→x. Unlike usual quantum geometry, we
now do not suppose nondegeneracy in the sense that these are all
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nonzero. The arrows x→ y for which px→y ̸= 0 are the more relevant
subgraph but it is convenient to use the full bidirected graph for
Ω1 with the price that some of the weights could vanish. Given the
bimodule inner product, we use the canonical graph Laplacian (Majid,
2013) as above, which works out as

(10) −∆θf = (df, θ) =
∑
x→y

(f(y)− f(x))δxpy→x.

For the moment, we work over R and define functions

p, q ∈ R(X), p(x) =
∑
y:x→y

px→y, q(x) = (θ, θ) =
∑
y:x→y

py→x,

∀x, y ∈ X . We will assume that ( , ) is stochastic in the sense that

px→y ≥ 0, ∀x→ y, p(x) ≤ 1, ∀x ∈ X.

In other words, we do noncommutative geometry but with weights
in the Heyting algebra [0, 1]. In more conventional terms, we define
a Markov transition matrix by Px,y = px→y if x → y and Px,x =

1−p(x) with other entries zero, which is then right stochastic (all rows
sum to 1). One could equally extend the graph to allow self-arrows
with px→x = 1− p(x) on the extended graph, defining a generalised
calculus Ω̃1 in the sense of (Majid and Tao, 2019).

We also consider f ∈ R(X) a probability distribution so that f(x)
is the probability for each event x, or in vector terms f = (f(x))

is a stochastic row vector i.e. its elements are ≥ 0 and sum to 1. A
Markov process with transition probabilities px→y is an evolution of
such distributions, i.e., labelled by a step index i, with

(11) fi+1(x) =
∑
y

fi(y)Py,x =
∑
y

fi(y)py→x + (1− p(x))fi(x)
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with the convention that py→x = 0 if y → x is not an arrow of
the active graph. Here fi+1 is again stochastic since

∑
x fi+1(x) =∑

y fi(y) so that the normalisation is preserved.
The other ingredient is that the lattice line Z can be viewed as a

graph · · · •i → •i+1 → · · · and as such there is a 1-dimensional dif-
ferential calculus Ω1(Z) defined by the graph. As it happens, this is a
Cayley graph associated to the additive generator 1, which means
there is a basic left-invariant 1-form e+ with bimodule relations
e+f = R+(f)e+, where R+(f)i = fi+1, and exterior derivative
df = (∂+f)e+ with (∂+f)i = fi+1 − fi the usual 1-step discrete
time derivative. This is not bidirected and not suitable for a ∗-calculus
(we would be need Ω1 to be 2-dimensional as in (Majid, 2019b)) but
is more relevant at the moment.

Proposition 3.1. A discrete Markov process with probability distri-
bution fi(x) on X at each time i appears naturally as the quantum
differential equation

∂+f = −∆θf + (q − p)f,

where ∂+ acts on i and on the right we use the graph calculus on X
with ( , ), ∆θ defined by the transition probabilities.

Proof. We have already done the work and it remains only to write
(11) in terms of ∆θ in (10).

Thus, a Markov process is nothing other than the noncommutative
diffusion equation with a certain potential term which vanishes in the
doubly stochastic case where p = q. An example of a right stochastic
matrix is shown in Figure 3. The novel idea here is that probabilities
play the role of ‘quantum metric inner product’ and that we obtain
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Figure 3: Markov process state diagrams on vertex set X with transition
probabilities labelling arrows of an extended graph. Associated functions on
the left are p = (0.6, 0.4, 0.8, 0.2), q = (0.2, 0.7, 0.4, 0.7) in vertex order as
numbered.

a quantum geometric picture if we use the canonical Laplacian as-
sociated to this. The latter can coincide with the Laplacian for other
more geometric connections (there are several examples in (Beggs
and Majid, 2020) where that happens).

We can go further and extend the geometric meaning of a Markov
process by tropicalisation, i.e., by writing

px→y = e−λx→y , p(x) = e−λx→x , λx→y, λx→x ≥ 0

and observe that the transition probability after n-steps is

Pnx,y =
∑

γ:x→···→y

e−λ(γ); λ(γ) =

n−1∑
i=0

λxi→xi+1

where γ = x0 → x1 · · · → xn−1 → xn is an n-step path from x0 = x

to xn = y (in the extended graph where we allow self-steps). If we
think of λx→y as some kind of more geometric ‘asymmetric length’
associated to the arrow or self-arrow then λ(γ) is the ‘length’ of the
path γ. Thus we see how a generalised form of Riemannian geometry
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emerges as an interpretation of a Markov process, or conversely how
Markov processes emerge naturally from generalised Riemannian
geometry, with a contribution of maximal probability equated to a
path of shortest length. It is generalised in the sense that ‘lengths’ are
direction dependent; there is no assumption that λx→y = λy→x or
even that one is nonzero when the other is, and we also allow self-
arrow lengths λx→x. Figure 3 shows the shortest path in this sense
between 1 and 3 as via 2. In fact the generalised geometry here is
equivalent to the notion of a Lawvere metric space (Fong and Spivak,
2019) on the vertex set, where d(x, y) is the length of the shortest path.
The main difference is that in that context one would have λx,x = 0

whereas in our case these are determined by the values on the arrows
of the unextended graph. But in both cases, the self-arrow carries
no new information and the actual data is the same. Moreover, this
difference does not affect the shortest length provided these are all
≥ 0, which is a restriction on the unextended graph weights in our
case. In other words, we are not quite freely labelling the arrows by
lengths λx→y as there is a restriction∑

y:x→y

e−λx→y ≤ 1

at every vertex. This has the character of some kind of lower bound
on the ‘distances’ from every vertex except that it is not one minimum
e.g. Planck length, but shared between all local directions. Our obser-
vations may also be related to path integration defined by stochastic
processes, even though our starting point is a fresh one.

Finally, we consider if there is a Schrödinger version of a Markov
process. We recall that in usual quantum mechanics, if ψ obeys ψ̇ =
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( ıℏ2m∆ + V
ıℏ )ψ and normalisation ||ψ||L2 = 1 then the probability

density f = |ψ|2 obeys the conservation law

ḟ +∇ · J = 0, J = − ıℏ
2m

(ψ̄∇ψ − ψ∇ψ̄),

where J is the probability current. This implies that
∫
ḟ = 0 so that∫

f = 1 holds at all times. Also note the formal similarity of the
Schrödinger equation to an ‘imaginary time’ (Wick rotation) version
of the diffusion one.

We first compute in general that if we are on an inner ∗-differential
algebra with V = V ∗ ∈ A, θ∗ = −θ and ∗( , ) = ( , )flip(∗ ⊗ ∗) and
set f = ψ∗ψ as dependent on an additional continuous time with

ψ̇ = ı(−∆θ+V )ψ = ı(dψ, θ)+ıV ψ = −ı(θ,dψ)+ı[(θ, θ), ψ]+ıV ψ

then
ψ̇∗ = ı(θ,dψ∗)− ıψ∗V

so that

ḟ = ψ̇∗ψ + ψ∗ψ̇ = ı(θ,dψ∗)ψ − ıψ∗(θ,dψ) + ıψ∗[(θ, θ), ψ].

If A is commutative then this reduces to

ḟ = −( , )(θ ⊗ J) = −∇θ · J, J = ı ((dψ)ψ∗ − (dψ∗)ψ)

as the probability current 1-form, where ∇θ = θ⊗ is the canonical
connection. This remark only applies to continuous time, and more-
over, we do not necessarily have

∫
: A → R specified, and even if

we did, we may not have
∫
∇θ · J = 0 for all ψ. In case of an honest

quantum metric and QLC, we might expect that
∫

can be chosen
depending on the metric so that integral of a divergence does vanish
as in Riemannian geometry (it is not clear how generally we could do
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this). However, in our asymmetric setting, this seems unlikely both
mathematically and physically; we should not expect actual conserved
probability, but rather we have a formal similarity as well as an ele-
ment of irreversibility. A partial result at our graph theory level is the
following.

Proposition 3.2. Let ψi ∈ C(X) be complex valued, V ∈ R(X) real
valued, fi = |ψi|2 and suppose that

∂+ψ = ı(−∆θ + V )ψ,

where ∂+ acts on the discrete time index i. Then

∂+f = V (−∆θ + V )f + V (dψ̄,dψ)−∇θ · J,

J = ı((dψ)ψ̄ − (dψ̄)ψ)− 1

2
((dψ)∆θψ̄ + (dψ̄)∆θψ)

which we can also write as

∂+f = V 2f −∇θ · JV ,

JV = ı((dψ)ψ̄−(dψ̄)ψ)+(dψ)(−1

2
∆θ+V )ψ̄+(dψ̄)(−1

2
∆θ+V )ψ.

Proof. Here −∆θψ = (dψ, θ) etc., so at the next time step,

ψnew = ψ + ı((dψ, θ) + V ψ), ψ̄new = ψ̄ − ı((dψ̄, θ) + V ψ̄),

fnew = (ψ̄ − ı((dψ̄, θ) + V ψ̄))(ψ + ı((dψ, θ) + V ψ))

= f + ((dψ̄, θ) + V ψ̄)((dψ, θ) + V ψ) + ıψ̄(dψ, θ)− ı(dψ̄, θ)ψ
= (1 + V 2)f + (dψ̄, θ)(dψ, θ) + (dψ, θ)(ı+ V )ψ̄

+ (dψ̄, θ)(−ı+ V )ψ

with a cross term V ψ̄ψ cancelling. Next

(dψ̄, θ)ψ = (dψ̄, θψ) = (dψ̄,dψ)+(dψ̄, ψθ) = (dψ̄,dψ)+((dψ̄)ψ, θ)
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so this combined with ψ̄(dψ, θ) = (ψ̄dψ, θ) contributes V (df, θ) +

V (dψ̄,dψ) to fnew. We also note that

−(θ, (dψ)ψ̄−(dψ̄)ψ) = −(θ,dψ)ψ̄+(θ,dψ̄)ψ = (dψ, θ)ψ̄−(dψ̄, θ)ψ

which times ı verifies the first term of J . It remains to note that

−(θ, (dψ̄)(dψ, θ)) = −(θ, (dψ)(dψ̄, θ)) = (dψ̄, θ)(dψ, θ)

which times 1/2 for each expression as in J, gives the remaining term
needed for fnew. This gives our first expression for ∂+f = fnew − f .
For the second expression, we note that

−(θ, (dψ̄)V ψ+(dψ)V ψ̄)

= V ψ̄(dψ, θ) + V ψ(dψ̄, θ) = V (df, θ) + V (dψ̄,dψ)

as required for the extra terms in JV to replace the corresponding
terms in fnew.

Writing

J =
∑
x→y

Jx→yωx→y, ψ̃(y) =
∑
y:x→y

ψ(y)py→x,

explicit formulae for the various terms are

(dψ̄,dψ)(x) =−
∑
y:x→y

f(y)py→x − f(x)q(x)

+
∑
y:x→y

(ψ(x)ψ̄(y) + ψ̄(x)ψ(y))py→x

Jx→y = ı(ψ(y)ψ̄(x)− ψ̄(y)ψ(x)) + 1

2

(
ψ(y)

¯̃
ψ(x) + ψ̄(y)ψ̃(x)

−ψ(x) ¯̃ψ(x)− ψ̄(x)ψ̃(x)− (ψ(y)ψ̄(x) + ψ̄(y)ψ(x))q(x)
)
+ f(x)q(x)
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and the additional terms in JV x→y are

V (x)(ψ(y)ψ̄(x) + ψ̄(y)ψ(x)− 2f(x)).

A direct calculation from fnew in the proof above also gives:

Proposition 3.3. For the discrete Schrödinger process ∂+ψ =

ı(−∆θ + V )ψ, we have∑
X

∂+f =
∑
X

(
(V − q)2f + (V − q)(ψ̄ψ̃ +

¯̃
ψψ) + |ψ̃|2 + ı(ψ̄ψ̃ − ¯̃

ψψ)
)

for f = |ψ|2.

This is typically not zero, i.e. the discrete Schrödinger process
with the ∇θ connection does not leave the l2-norm

∑
x |ψ|2 constant,

i.e. does not consist of unitary steps. This is visible even for V = q,
when ∂+ψ = ıψ̃, and is due in part to the 1-sided step ∂+f not
reflecting a ∗-calculus on Z. It is also due to the connection ∇θ being
a convenient but not necessarily physical choice. Nevertheless, we see
from the proposition that ∂+f has a certain form which, when V = 0,
is ∂+f = −∇θ · J as expected in quantum mechanics from a formal
point of view, while for other V also contains a Markov-process like
element.

3.1. Example of 2-state process

More generally, we should consider the discrete Schrödinger
process with other bimodule connections ∇ on Ω1 and the associated
∆ and ∇· from (7). We will say that a connection ∇ is unitary if there
exists a potential V such that ∂+ψ = ı(−∆+ V )ψ indeed has unitary
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steps so that the total probability is conserved. In the remainder of
this section, we explore this idea for the simplest example of a two
state process.

Thus, let X = {0, 1} with α = p1→0 > 0 and β = p0→1 > 0

define a classical 2-state Markov process as shown on the right in
Figure 3. In addition to this process interpreted as in Proposition 3.1
in terms of ∇θ, we consider the same ideas as in Proposition 3.2 but
for Laplacian and divergence given by a general bimodule connection
∇. It is known from (Majid, 2019a, Lemma 2.1) that these take the
form

∇θ = (1− b)θ ⊗ θ, b(0) = s, b(1) = t

for two complex parameters s, t. Here, θ = ω0→1 + ω1→0 is a basis
over the algebra, so it is enough to specify∇ on this. Its general value
deduced from the Leibniz rule

∇(ψθ) = dψ ⊗ θ + ψ∇θ; dψ = (ψ(1)− ψ(0))(ω0→1 − ω1→0)

comes out as

(12)
∇ω0→1 = ω1→0 ⊗ ω0→1 − sω0→1 ⊗ ω1→0,

∇ω1→0 = ω0→1 ⊗ ω1→0 − tω1→0 ⊗ ω0→1.

Meanwhile, the metric inner product is

(ω0→1, ω1→0) = αδ0, (ω1→0, ω0→1) = βδ1

and it is known also from (Majid, 2019a, Lemma 2.1) that∇ is metric
compatible (and hence a QLC for the standard exterior algebra) if and
only if β = ±α, which in our context means β = α, and t = s−1.
Moreover, in this case it is ∗-preserving if and only if s has modulus
1. So there is a circle of ∗-preserving QLCs, including the obvious
s = t = −1 with ∇θ = 2θ ⊗ θ. By contrast, the canonical one we
studied above was ∇θθ = θ ⊗ θ at s = t = 0.
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We proceed with a general bimodule connection (12) for our
discussion, remembering that it is a QLC only when β = α and
s = t−1. The metric inner product is

(ω0→1, ω1→0) = αδ0, (ω1→0, ω0→1) = βδ1

so that the Laplacian comes out as as

(∆ψ)(0) = −δψα(1 + s), (∆ψ)(1) = δψβ(1 + t); δψ := ψ(1)− ψ(0).

The discrete Schrödinger process ∂+ψ = ı(−∆ + V )ψ then corre-
sponds to the matrix step on the column vector ψ(0), ψ(1),

ψnew = Uψ;

U =

1 + ıV (0)− ıα(1 + s) ıα(1 + s)

ıβ(1 + t) 1 + ıV (1)− ıβ(1 + t)

 ,

which is unitary if and only if

ıα(1 + s) = −eıϕz̄, |1 + ıV (1)− z|2 + |z|2 = 1,

1 + ıV (0) = −eıϕ(2z̄ − 1 + ıV (1)),

where z = ıβ(1 + t) and eıϕ is some phase. This has solution

(13)
V (0) = V (1) = 0, z =

1

2
(1− eıϕ),

s = −1− ı

2α
(1− eıϕ), t = −1− ı

2β
(1− eıϕ)

for a free angle parameter ϕ, with resulting Schrödinger process step

(14) U =

1− z z

z 1− z

 = e
ıϕ
2

 cos(ϕ2 ) −ı sin(ϕ2 )
−ı sin(ϕ2 ) cos(ϕ2 )

 .
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Thus, the 2-point graph has a 1-parameter circle of bimodule connec-
tions ∇ which are ‘unitary’ in the sense that the step operator U is
unitary. Some examples are:

(i) ϕ = 0 or z = 0 gives s = t = −1 in the QLC family and

∇θ = 2θ ⊗ θ, U = id;

(ii) ϕ = π or z = 1 gives s = −1− ı
α and t = −1− ı

β and

∇θ = (2 +
ı

γ
)θ ⊗ θ; γ(0) = α, γ(1) = β; U =

0 1

1 0

 .

By contrast, our canonical ∇θ = θ ⊗ θ at s = t = 0 is not on this
circle.

Proposition 3.4. For the 1-parameter circle of unitary discrete
Schrödinger evolutions (13)–(14), and writing f = |ψ|2 in vector
notation, we find

fnew =

cos2(ϕ2 ) sin2(ϕ2 )

sin2(ϕ2 ) cos2(ϕ2 )

 f

+
ı

2
sin(ϕ)

(
ψ̄(0)ψ(1)− ψ̄(1)ψ(0)

)−1
1

 .

The first term is a general left and right stochastic Markov process on
f . In quantum geometric terms,

∂+ψ = −ı∆ψ, ∂+f =
1

2ı
(1− e−ıϕ)∆f −∇ · J,

J =
ı

2
(1 + e−ıϕ)

(
(dψ)ψ̄ − (dψ̄)ψ

)
.
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Proof. Here

fnew(0) = |ψnew(0)|2 = |(1− z)ψ(0) + zψ(1)|2

= |1− z|2f(0) + |z|2f(1) + (1− z̄)zψ̄(0)ψ(1)
+ z̄(1− z)ψ̄(1)ψ(0)

= cos2(
ϕ

2
)f(0) + sin2(

ϕ

2
)f(1)− ı

2
sin(ϕ)(ψ̄(0)ψ(1)

− ψ̄(1)ψ(0))

and similarly for fnew(1) = |ψnew(1)|2 = |(1 − z)ψ(1) + zψ(0)|2.
Note that the entries of f remain positive and summing to 1 even
though there is an extra divergence term.

We next consider a general 1-form J = J01ω0→1 + J10ω1→0 for
constants J01, J10 and find from (12) and (13) that

∇ · J = ( , )
(
J01(ω1→0 ⊗ ω0→1 − sω0→1 ⊗ ω1→0)

+ J10(ω0→1 ⊗ ω1→0 − tω1→0 ⊗ ω0→1)
)

= (J10 − sJ01)αδ0 + (J01 − tJ10)βδ1
= (J01 + J10)γ +

ı

2
(1− eıϕ)j

where γ(0) = α, γ(1) = β and j(0) = J01, j(1) = J10 are functions
on X. If we set J01 = −J10 = ı

2 (1 + e−ıϕ)(ψ̄(0)ψ(1) − ψ̄(1)ψ(0))
then −∇ · J gives the second term of fnew as required. This gives J
as stated after we observe that

(dψ)ψ̄ − (dψ̄)ψ = (ψ(1)− ψ(0))(ω0→1 − ω1→0)ψ̄

− (ψ̄(1)− ψ̄(0))(ω0→1 − ω1→0)ψ

= (ψ(1)− ψ(0))ψ̄(1)ω0→1 − (ψ(1)− ψ(0))ψ̄(0)ω1→0

− (ψ̄(1)− ψ̄(0))ψ(1)ω0→1 + (ψ̄(1)− ψ̄(0))ψ(0)ω1→0

= (ψ̄(0)ψ(1)− ψ̄(1)ψ(0))(ω0→1 − ω1→0).
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Moreover, df = (f(1)− f(0))(ω0→1 − ω1→0). Hence, using our
computation of ∇·,

∆f = ∇ · df =
ı

2
(1− eıϕ)(f(1)− f(0))

 1

−1


=
ı

2
(1− eıϕ)

−1 1

1 −1

 f

in vector notation for f (which, when applied to ψ, recovers the
Schrödinger process step U = 1− ı∆ in (14) as expected). Moreover,
the stated first term of ∂+f is then

1

2ı
(1− e−ıϕ) ı

2
(1− eıϕ)

−1 1

1 −1

 f = sin2(
ϕ

2
)

−1 1

1 −1

 f

as required in fnew − f .

For the l2-norm, we took the constant measure in summing over
X. One could also, in principle, introduce a measure related to the
quantum metric ( , ). This would be more in keeping with Riemannian
geometry but is not so natural from our point of view on Markov
processes (where the usual constant measure is preserved).

4. Digital geometry of 2× 2matrices

Quantum Riemannian geometry and quantum gravity on one of the
simplest graphs, a quadrilateral, was recently achieved (Majid, 2019a)
(with Lorentzian style negative square-length weights on two of the
sides). Here we briefly look at the complementary example of a



214 Shahn Majid

noncommutative finite geometry, namely the humble algebra of 2× 2

matrices M2(C). Its quantum Riemannian geometry turns out to be
rather rich and is not fully explored.

We take the standard 2D ∗-differential calculus from (Beggs
and Majid, 2017; 2020) with a basis of central 1-forms s, t ∈ Ω1(M2),
differential and exterior algebra

da = [E12, a]s+ [E21, a]t,

s2 = t2 = 0, s∧t = t∧s, ds = 2θ∧s, dt = 2θ∧t, s∗ = −t,

which is inner with θ = E12s + E21t. Here Eij is the matrix with 1

in the (i, j) place and 0 elsewhere.
Next, as the basis is central and the metric has to be central to

be invertible in the bimodule sense, any invertible 2 × 2 complex
matrix gij in our basis can be taken as metric coefficients, with the
condition that g12 = −g21 if we want to impose quantum symmetry,
and g22 = g11, g12 real if we want g to be ‘real’ in the required
hermitian sense. It is easy to see that

(15) ∇s = 2θ ⊗ s, ∇t = 2θ ⊗ t, σ = −flip, R∇ = 0

on the generators is a flat QLC simultaneously for all quantum metrics.
But there are typically many more QLCs. The actual moduli of these
has only been computed in (Beggs and Majid, 2020, Example 8.13
and Exercise 8.3) for a couple of sample quantum metrics g1, g2, with
results there as follows.
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(i) g1 = s⊗ t− t⊗ s. This has a principal 4-parameter moduli of
QLCs of the form

∇s =2θ ⊗ s−

0 µα

β 0

 s⊗ s−

 0 α

νβ 0

 g1

+

 0 να

ν2β + (µν − 1)α 0

 t⊗ t,

∇t =2θ ⊗ t+

 0 µ2α+ (µν − 1)β

µβ 0

 s⊗ s

+

0 µα

β 0

 g1 −

 0 α

νβ 0

 t⊗ t.

The α = β = µ = ν = 0 point is the flat one (15). We rescaled the
µ, ν compared to (Beggs and Majid, 2020) here and in the next case.

(ii) g2 = s⊗ s+ t⊗ t. This has a principal 3-parameter moduli
of QLCs of the form

∇s =2E21t⊗ s+

 0 µρ

2µ− ρ(1 + µ(µ+ ν)) 0

 s⊗ s

+

 0 −ρ
µρ 0

 g1 +

0 νρ

ρ 0

 t⊗ t,

∇t =2E12s⊗ t+

 0 −ρ
µρ 0

 s⊗ s−

0 νρ

ρ 0

 g1

+

 0 −2ν + ρ(1 + ν(µ+ ν))

νρ 0

 t⊗ t.
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There are restrictions on the parameters over C for a ∗-preserving
connection. The µ = ν = ρ = 0 point has curvature

R∇s = 2s ∧ t⊗ s, R∇t = 2s ∧ t⊗ t.

We also have an obvious ‘symmetric lift’ i(s ∧ t) = 1
2 (s⊗ t+ t⊗ s)

which at the zero parameter point yields

Ricci = s⊗ t+ t⊗ s, S = 0,

but note that i in the ∗-algebra case is not antihermitian in the required
sense so that this Ricci is not hermitian.

The above are principal moduli with nontrivial σ and zero for
the bimodule map α in the general construction; there is also a 4
dimensional moduli of QLCs for g2 with σ = −flip. In general, the
space of ∗-preserving ‘real’ pairs (g,∇) appears to be generically 7
dimensional, although this remains to be determined. Once known,
one could define quantum gravity on M2(C) by integration over this
moduli, schematically,

⟨O1O2⟩ =
∫
D(g,∇)eıTrS[g,∇]O1O2∫
D(g,∇)eıTrS[g,∇]

for the given differential structure and lift i fixed. Here S[g,∇] ∈
M2(C) is the Ricci scalar, which generically is expected not to vanish.
One could also consider summing or integrating over the choice of
differential structure up to diffeomorphism.

It is natural to ask how this approach to quantum gravity com-
pares to other, more established, approaches. A direct comparison
is not possible due to very different methodologies, but taking the
‘coordinate algebra’ finite dimensional as we did above is broadly in
the spirit of replacing spacetime by a finite geometry, such as a finite
lattice or triangulation (Ambjørn, Jurkiewicz and Loll, 2001). A main
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difference in our case is that we approach the matter in a coherent
way that applies, as we saw in Section 2, to general algebras including
finite-dimensional ones at one end of the range and classical C∞(M)

for a manifold M at the other, without too many ad-hoc steps. A
consequence is that one can in principle take a limiting process from
one to the other without ever leaving the category of models. Thus, the
polygon lattice Zn in (Argota-Quiroz and Majid, 2020) with its 2D
calculus can be seen in the limit n→∞ to tend to S1 with a certain
2D calculus. This turns out to be a central extension of the classical
calculus on a circle in the sense of (Majid, 2020b; Beggs and Majid,
2020, Chapter 8.3), where the ‘partial-derivative’ associated to the ex-
tra dimension is a 2nd order Laplacian-like operator giving something
like an Ito derivative in stochastic calculus. Here, the polygon graph
is viewed as bidirected i ↔ i + 1 at vertices numbered in sequence
mod n, and this is the reason for the 2D calculus. As we have seen
in Section 3, we can also work with 1-way arrows x → y, and this
could make contact with causal set models (Dowker, 2013) where
x → y indicates a causal path between spacetime points. So far in
quantum Riemannian geometry models, the Lorentzian case has been
handled by having ‘square-length’ weights< 0 on designated timelike
edges (Majid, 2019a). In such models, one could think of the causal
structure as a choice of orientation of the subgraph of timelike edges
(choosing an arrow direction for each such edge).

Other approaches such as loop quantum cosmology (Ashtekar
et al., 2007) also drastically cut the degrees of freedom to the point of
computability. From such models as well as from experience with 2+1
quantum gravity, it does appear that some quantum gravity effects
could be modelled by a noncommutative spacetime, which is support
for our underlying framework. What we would hope for here is a kind
of ‘eigengeometry’ where quantum gravity effects render spacetime
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noncommutative as a better approximation than classical, then quanti-
sation of gravity on that background results in effects which justify
the supposed quantum spacetime as the effective background. This
is a circular self-consistency condition, the content of which has yet
to be understood. There have also been attempts at discrete quantum
gravity in Connes’ spectral triple approach to noncommutative geom-
etry, where one integrates over possible Dirac operators (Hale, 2002)
on Z2. Although very different, the results are not unlike the those
of (Majid, 2019a; Argota-Quiroz and Majid, 2020) in that there is a
constant relative uncertainty. This work also looks at integration over
spectral triples on M2(C).

Next, what about the landscape of all finite quantum Riemannian
geometries of small algebra dimension? This is a tough classification
programme and so far has been achieved (Majid and Pachoł, 2020a)
only up to dimension 3 and by specialising to the digital case over the
field F2 = {0, 1} to simplify the problem. Here algebra dimension 2
has no interesting quantum geometries, while for dimension 3 there
are 7 algebras labelled A–G but only B,D,F admit regular 2D quantum
Riemannian geometries, as summarised in the table in Figure 4. Here
B is the Boolean algebra of subsets of a set of three elements with
calculus and metric corresponding to an equilateral triangle graph,
forming the group Z3. It is a Hopf algebra and its dual is the group
algebra D= F2Z3. Its three quantum metrics are related by an overall
element of the algebra (i.e., ‘conformally equivalent’ in some sense).
In each case, the 4 QLCs with 1 flat and 3 nonflat is the opposite of
what was found for B, possibly consistent with Hopf algebra duality
interchanging high and low curvature (cf. Majid, 1988; 1991). For
F8, the 7 metrics are again related by invertible factors but fall into
three groups behaving differently as shown in the table. Details of the
connections and curvatures are given in (Majid and Pachoł, 2020a).

For interesting examples with the algebra noncommutative, we
therefore need to go to dimension n = 4, which was beyond the
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Figure 4: Number of quantum geometries over F2 of algebra dimension 3
and 2D parallelisable calculus Ω. Data from (Majid and Pachoł, 2020a).

computer power available when writing (Majid and Pachoł, 2020a)
(where QLCs were found by trying some 224 possible connection
values). As a result, the landscape of all quantum geometries for
n = 4 is largely unexplored, though some flat connections are known
for the algebra A2 in the family of Hopf algebras over F2 in (Bassett
and Majid, 2020). In dimension 4, there are 9 distinct noncommutative
algebras (Majid and Pachoł, 2020b) (and 16 commutative ones) over
F2, and one of the former is of course M2(F2).

Here we note that by reducing the above generic solutions for
M2(C) to the F2 case, we can obtain some, though not necessarily all,
of the quantum geometries on M2(F2), at least for the two metrics
stated above. Since 2=0 in F2, we now have ds = dt = 0, and indeed
t = dE12, s = dE21 are exact. Setting the parameters for our generic
solutions to all values 0,1 gives us up to 16 and 8 QLCs respectively
for our standard metrics, which appear now as

g1 = s⊗ t+ t⊗ s, g2 = s⊗ s+ t⊗ t.

We broadly identify four cases:
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(a) Setting α = β = ρ = 0 and any µ, ν gives the zero flat QLC
∇s = ∇t = 0 for both metrics.

(b) Setting α = β = ρ = 1 and µ = ν = 1 gives another flat QLC

∇s = ∇t = σ1(g1 + g2), R∇ = 0

for both metrics, on noting that ∇(s+ t) = 0. Here σ1 = E12 + E21.
(c) Setting α = β = ρ = 1 and µ = ν = 0 gives another flat QLC

∇s = E12g1 + E21g2, ∇t = E21g1 + E12g2, R∇ = 0

for both metrics, on noting that d(E12t) = d(E21s) = 0 and
d(E12s) = d(E21t) = s ∧ t.

Figure 5: Nonzero QLCs on M2(F2) arising as limits of connections over
C (which may not be all of them). All are for g1 except the ρ = 1 rows for
g2, which are flat. We see 6 with curvature, where V = s ∧ t is the ‘volume
form’.
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(d) For curvature, we therefore need to look to α ̸= β or µ ̸= ν.
The nonzero ones are shown in the table Figure 5, where we see that
half of them have Riemann curvature, all QLCs for the metric g1.

Next, the usual lift i needed for the Ricci curvature, and the
Einstein tensor, both present a problem over F2 in that there is no 1/2

at our disposal. Our approach in (Majid and Pachoł, 2020a) is to look
at all possible i and tentatively to define Eins = Ricci + gS. Now we
explore a different idea which is not systematic but applies when the
exterior algebra has a suitable form, namely to look for two halves of
the classical ‘antisymmetric’ lifts’ separately, without the factor 1/2.
For the M2(F2) calculus as above, obvious choices would be

i+(s ∧ t) = s⊗ t, i−(s ∧ t) = t⊗ s.

As a result, there are two natural Ricci tensors Ricci± as defined with
i±. If S+ = S− = S, i.e., if the two Ricci scalars are the same then
we propose the ‘twice-Ricci’ and ‘twice-Einstein’ tensors

2Ricci = Ricci+ +Ricci−, 2Eins = 2Ricci + gS.

For the 3-dimensional Boolean algebra B, this gives 2Ricci = g,
S = 1 and 2Eins = 0 but for the D algebra one has S+ ̸= S− for the
obvious lifts (which is not to say the new approach could not work,
for suitable i±.)

Proposition 4.1. On M2(F2) with the metric g1 as above and its
two nonflat joint QLCs in Figure 5 with curvature R∇s = R∇t =

s ∧ t⊗ (s+ t), we have

Ricci+ = t⊗ (s+ t), Ricci− = s⊗ (s+ t), S± = 1;

2Ricci = g1 + g2, 2Eins = g2.
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Moreover, ∇ here are also QLCs for g2 and hence ∇(2Ricci) =

∇(2Eins) = 0. The three other types of curvature for QLCs of g1 in
Figure 5 have S+ ̸= S−.

Proof. We use the curvature as shown and take the ‘trace’ with respect
to g1 as this is the relevant metric. Since the output of R∇ is the same
on s, t,

Ricci+ = ((s+ t, )⊗ id)(s⊗ t⊗ (s+ t)) = t⊗ (s+ t), S+ = 1,

Ricci− = ((s+ t, )⊗ id)(t⊗ s⊗ (s+ t)) = s⊗ (s+ t), S− = 1.

In this case, we also have 2Ricci = (s + t) ⊗ (s + t) = g1 + g2

on adding these. Hence adding Sg1 gives us the other metric. We
next look more closely at the two connections in the table with this
curvature. The one on the bottom line at α = µ = ν = 1 and β = 0

has braiding

σ(

st ⊗ s) = s⊗

st + g1 + g2, σ(

st ⊗ t) = t⊗

st .
Then since ∇ has the same value on s, t,

∇g2 = ∇s⊗ s+∇t⊗ t+ (σ ⊗ id)(s⊗∇s+ t⊗∇t)
= E12(g1 + g2)⊗ (s+ t) + E12(σ ⊗ id)((s+ t)⊗ (g1 + g2))

= E12(s+ t)⊗3 + E12(s+ t)⊗3

+ ((σ − flip)⊗ id)((s+ t)⊗ s⊗ (s+ t)) = 0,

where we apply σ as flip for all cases, plus the additional σ − flip

when acting on (s+ t)⊗ s in the second term, which contributes zero.
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The computations for the three other types of curvature of QLCs
for g1 are similar. For example, for R∇s = s∧ t⊗ (E11s+ t), R∇t =

s ∧ t⊗ (s+ E22t), we have

Ricci+ = t⊗ (t+ E11s), S+ = E11,

Ricci− = s⊗ (s+ E22t), S− = E22

so that S+ ̸= S−. Interestingly, S+ + S− = 1. These same values
of S± are also obtained for the other two cases. Hence for these
three curvature types, our definition of 2Eins does not apply, although
for the case shown, we do have 2Ricci + S+t ⊗ s + S−s ⊗ t = g2

again. One could still search for other more suitable i± (similarly to
the algebra D for n = 3) and meanwhile, in all cases, we can still
use the tentative proposal in (Majid and Pachoł, 2020a) to define
Eins± = Ricci± + S±g1.

The Einstein tensor vanishes automatically for a classical 2-
manifold, but this need not be the case in quantum geometry. We
see on this sample of connections on M2(F2) that 2Eins is conserved
when it applies but that the general picture for a suitable Einstein ten-
sor remains inconclusive. Stepping away from quantum Riemannian
geometry towards other applications relevant to computer science,
(Majid and Pachoł, 2020b) classified all quantum groups to dimension
4 over F2.

5. Beyond de Morgan duality

Quantum geometry also provides a geometric view of de Morgan
duality (Majid, 2020a), extending the well-known feature of Boolean
algebras that says that the negation of a Boolean expression has the
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same form with all elements negated, ∅ and everything swapped,
and ∪,∩ swapped. In propositional logic, this sends a ⇒ b to the
equivalent statement b̄⇒ ā, while in terms of the power set P (X) of
subsets of a set X , the duality sends a ⊆ X to its complement ā in X .

This was the topic of my conference talk and I refer to (Majid,
2020a) for details. In the present notes, I instead want to recall the
philosophical context and discuss what might come next. Therefore,
suffice it to say that one can view P (X) as an algebra over F2 with
product ∩ and addition ⊕ (the ‘exclusive or’ a⊕ b = (a ∪ b) ∩ a ∩ b
operation). Next, we fix a directed graph on X as vertex set and let
Arr be the set of arrows. Combining the graph calculus as in Section 3
with digital methods as in Section 4, we set Ω1(P (X)) = P (Arr)

with addition given by ‘exclusive-or’ of subsets of arrows and the
noncommutative bimodule structure (Majid, 2020a)

a ∩ ω := {arrows in ω with tail in a},
ω ∩ a := {arrows in ω with tip in a},

da = {arrows with one end in a and other end in ā},

where a ⊆ X and ā is its complement. One can go on and define the
maximal prolongation exterior algebra Ωmax(P (X)) as well as two
natural quotients.

We also define the dual algebra structure P̄ (X) as the same set
P (X) but with addition given by ‘inclusive and’ or ‘not-exclusive-or’
a⊕̄b = (a ∩ b) ∪ a ∪ b and product a ∪ b. We define Ω1(P̄ (X)) =

P̄ (Arr) with its ‘inclusive and’ as addition and (Majid, 2020a)

a ∪ ω = {arrows in ω or with tail in a},
ω ∪ a = {arrows in ω or with tip in a},

d̄a = {arrows wholly in a or wholly in ā} = da.

This too extends to Ωmax(P̄ (X)) and its two natural quotients.
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Theorem 5.1. (Majid, 2020a) The algebra map¯ : P (X)→ P̄ (X) is
a diffeomorphism, i.e. extends to a map of the corresponding differen-
tial exterior algebras.

That¯ is an algebra isomorphism is the usual de Morgan duality
of Boolean algebra in our algebraic language of digital geometry,
and the claim is that this extends in the right manner to arrows or
differentials of the graph calculus. The extension to 1-forms is just
complementation of subsets of arrows. The work (Majid, 2020a) also
shows how these ideas can be extended to any unital algebraA over F2

with Ā isomorphic via ā = 1+a, likewise becoming a diffeomorphism
for suitable differential structures.

This is a purely mathematical result but its philosophical moti-
vation is as follows. Indeed, some 30 years ago in (Majid, 1991),
I posed the question that if Boolean algebras are the simplest ‘the-
ory of physics’ then what becomes of de Morgan duality in more
advanced theories? I argued that while clearly broken by quantum
theory and gravity alone (for example, apples curve space but the
presence of not-apples, meaning the absence of apples, does not) such
a duality but might re-emerge as a symmetry of quantum gravity. This
was and still is meant to be thought-provoking speculation rather than
something understood, but the idea was that we might say that a region
of space is ‘as full of apples’ as GR allows (forming a black hole and
expanding if we put more apples in) while someone else using the
dual picture might say that this same region of space was as empty of
not-apples as their quantum field theory allows (where in QFT, space
is never completely empty in some sense due to vacuum fluctuations).
I don’t know if this vision is achievable, but what we can do is move
quantum gravity down to the digital level of geometry on Boolean
algebras and see if de Morgan duality indeed holds there. This is what
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is done in (Majid, 2020a) at the Boolean level in so far as GR is a
theory of metrics and connections on Ω1; all of that works in a dual
version. We also needed an element of ‘quantum’ in that our extension
of ∩,∪ to arrows was noncommutative, then Theorem 5.1 says that
de Morgan duality indeed holds as part of general covariance in some
extended sense.

This sense is admittedly a little weird. In usual GR, a diffeomor-
phism is induced by an underlying set map, but complementation
is different and operates directly on subsets of X. For example, if
S ∈ P (X) is the Ricci scalar for a connection then for the same
geometry it appears as S̄ on the other side of de Morgan duality. So in
a region where the curvature characteristic function has value 1 for us,
it has value 0 for them. Similarly, the inner generator θ ∈ Ω1(P (X))

is the sum of all arrows, or in some sense the ‘maximal density’ dif-
ferential form. Its role on the de Morgan dual side is played by the
zero element which is the inner generator for Ω1(P̄ (X)) but from the
first point of view is literally the zero differential form. All of this is
suggestive of the black-hole/vacuum discussion above but is probably
the most we can say at the Boolean level (where it is hard to think
about actual quantum theory).

On the other hand, more advanced theories of physics could
still have the duality we seek in an increasingly visible form. Thus,
speculatively, just as Schrödinger’s cat is in a mixed state that is
neither dead or alive, I have proposed (Majid, 2015) co-Schrödinger’s
cat as a cat falling into a black hole. This is both dead in finite proper
time and alive forever in the frame of the observer at infinity. In
other words, while quantum theory is intuitionistic as in a Heyting
algebra, where we relax the rule that a∪ ā =everything, gravity might
be expected to be cointuitionistic in character in the de Morgan dual
sense, as in a coHeyting algebra, where we relax the rule that a∩ā = ∅.
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The latter has also been proposed for other reasons in (Lawvere, 1991)
as geometric in nature with ∂a = a ∩ ā a kind of boundary of a. This
then requires both effects or quantum-and-gravity for the symmetry to
be maintained. This suggests the next level of our duality programme:

Can we extend quantum differential geometry to Heyting and
coHeyting algebras and thereby extend the negation duality to
a diffeomorphism?

The problem is that a Heyting algebra has both a ‘meet’ product
∩ and a ‘join’ ∪ but the latter does not in general provide an addition
rule and does not play well with negation in order to be able to define
a more suitable ⊕ over which ∩ distributes, i.e. we do not in general
have the basics for an actual algebra in the sense of a ring (before
even considering a field). I do not know the answer, but I would like
to suggest an approach. In fact, both Boolean algebras P (X) and
Heyting algebras (and a lot more) are examples of preorders (P,≤) by
which we mean an extended directed graph (adding in all self-arrows)
which is closed under composition of arrows (here a ≤ b corresponds
to an arrow a → b and in the Boolean case is just subset inclusion).
Both cases actually have rather more structure, namely min and max
elements 0, 1 (the empty set and the whole set in the Boolean case),
unital tensor product ⊗ (the ∩) and an ‘internal hom’ hom leading
to a ‘dual’ ā = hom(a, 0) (the negation) and making the preorder
closed symmetric monoidal in the sense of (Fong and Spivak, 2019)
(this is a baby closed symmetric monoidal category in the sense that
there is at most one morphism between any two objects). Abstractly,
hom is a binary operation characterised by a ⊗ b ≤ c if and only if
a ≤ hom(b, c), which you can check is true in the Boolean case with
hom(b, c) = b̄∪c (and its existence is a definition in the Heyting case).
In this sense, de Morgan duality has a similar conceptual flavour to
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vector space duality in the tensor category of vector spaces, which is
in the right direction towards connecting it with observable-state or
Hopf algebra duality (Majid, 2014).

Next, instead of working directly with the Boolean or Heyting
algebra P as our ‘algebra of functions’, we work now with functionals,
i.e. the algebra A = C(P ) of functions on P . As P being a preorder
has a directed graph structure, we have

dΦ =
∑
a≤b

(Φ(b)− Φ(a))ωa≤b

for all functionals Φ ∈ C(P ) as a graph calculus on P . The Boolean
or Heyting negation as a set map P → P induces an algebra map
on C(P ) and this again is differentiable. We do not directly see the
‘manifold’ structure on X in the Boolean case where P = P (X) and
X itself has a directed graph with arrow set Arr. However, we can
similarly look at functionals of the differentials on X understood
now as functions on P (Arr). We therefore have the ingredients for
some form of variational calculus for functionals of functions on X
and their derivatives, in which the graph differentials on X enter,
much as quantum field theory on the space of functions on a manifold
still captures information about the manifold. When P is now some
Heyting algebra or indeed any preorder, we can look for similar
structures at the level of C(P ) with a calculus on P handled implicitly.
Given the importance of Heyting algebras and topos theory in physics
(see e.g. Döring and Isham, 2011) it should be useful to explore their
quantum Riemannian geometry, extending what should be achievable
in the Boolean case, even if we have to handle it implicitly in terms
of functionals. What may emerge is something like working over an
algebra but in terms of ∪ for addition, or some kind of ⊕ but with
weakened distributivity. Some ideas as to the latter were previously in
(Majid, 2014, Sec. 7).
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Heyting algebras provide the link up with probability as fol-
lows. We consider, as we did in Section 3, functions on X now
with values in [0, 1], i.e. probabilities. [0, 1] itself is a Heyting al-
gebra and C(X, [0, 1]) inherits its features pointwise, including a
preorder (where f ≤ g if f(x) ≤ g(x) for all x ∈ X), dis-
tributive, commutative and associative meet and join operations
(f ∪ g)(x) = max(f(x), g(x)) and (f ∩ g)(x) = min(f(x), g(x))

as well as an internal hom hom(f, g)(x) = 1 wherever f(x) ≤ g(x),
and g(x) at other points. The negation hom(f, 0) here is 1 at the ze-
ros of f and otherwise 0, which still interchanges ∪ and ∩ as for de
Morgan duality but which loses information and hence is not a proper
duality (indeed, double negation is not the identity except on the
Boolean subalgebra with values in {0, 1}). By contrast, we observe
that there is a different complementation which does square to the
identity,

(16) f̄(x) = 1− f(x), ∀x ∈ X,

and which again still interchanges ∩,∪ as expected for de Morgan
duality. It sends high probability to low probability in the same spirit as
discussed in the Boolean case (as well as in the spirit of the prophetic
work of the English satirist Douglas Adams). Moreover, we can still
take the preorder ‘field theory’ point of view and do differential
geometry and perhaps variational calculus on A = C(C(X, [0, 1]))
as above, but for the geometry of C(X, [0, 1]) itself, we again do not
have an algebra due to lack of a proper addition.

In fact, [0, 1] and C(X, [0, 1]) have another product which is the
more obvious one given by the usual product in [0, 1] as real numbers
and the ordinary pointwise product fg of functions with values in
[0, 1]. We can then generate its ‘de Morgan dual’ addition via the
complementation (16) as a new operation which we denote f ⊕ g =
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1−(1−f)(1−g) = f+g−fg in the spirit of (Majid, 2020a) for the F2

case. This is associative and has a zero but one has f(g⊕h) ≤ fg⊕fh
rather than full distributivity, so this pair of operations again does not
quite give an algebra. This product in R again makes both [0, 1] and
C(X, [0, 1]) closed symmetric monoidal preorders, but different from
our previous ones using ∩. The internal hom in [0, 1] is hom(p, q) = 1

if p ≤ q else q/p and similarly for functions hom(f, g)(x) = 1 at
points where f(x) ≤ g(x), and g(x)/f(x) at other points. In fact the
negation hom( , 0) here is the same as before (but the internal hom’s
in general are different).

All four binary operations on C(X, [0, 1]) remain tightly related
and we can consider the usual pointwise fg product along with f ∪
g given by the pointwise maximum. This has distributivity f(g ∪
h) = (fg) ∪ (fh) but, as mentioned, ∪ is not an addition law. On
the other hand, if we now replace probabilities in [0, 1] by minus
their logarithm as we did in Section 3 in discussing geodesic paths,
then we equivalently have functions on X with values in R≥0 with
pointwise addition and minimum, i.e. valued in the tropical version
of R. This point of view has, for example, applications in statistical
inference (Pachter and Sturmfels, 2004). So one may possibly garner
ideas for differential geometry on X itself from tropical algebraic
geometry. From probability functions to positive linear functionals on
noncommutative algebras is a further but well-known step. In this way,
we have sketched a path from Boolean algebras or logic to probability
to full quantum geometry over C, with some kind of generalised de
Morgan duality playing a pivotal role.

Finally, it should be mentioned that at the time of (Majid, 1991),
such duality ideas motivated the view that quantum gravity needs
geometry that is at the same time quantum or noncommutative, with
the duality realised slightly differently in concrete ‘toy models’ (Ma-
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jid, 1988) as observer-observed/representation-theoretic Hopf algebra
duality. The bicrossproduct quantum groups associated to Lie group
factorisations emerging from this, as well as the Drinfeld-Jimbo one
q-deforming complex simple Lie groups, contributed to a concrete
‘constructive’ approach to such quantum Riemannian geometry and
included the first convincing model (Majid and Ruegg, 1994) of quan-
tum spacetime with quantum symmetry. These ideas are also tied up
with quantum group Fourier transform and in physical terms with
‘Born reciprocity’ and were at the root of my proposal back in (Majid,
1988; 1991) as well in later works (Majid, 2012; 2015; 2014; 2018).
Although now somewhat established, the deepest aspect of this duality
– swapping observables and states – remains unexplored and should
relate to issues of measurement, probability and logic much as above,
for example to the entropic arrow of time (Majid, 1993). How exactly
it relates to a duality growing out of de Morgan duality remains a topic
for further thought, albeit the notion of bi-Heyting algebra (Reyes
and Zolfaghari, 1996) could be a step in that direction.

6. Concluding remarks

The main new results of the paper are our quantum geometric view of
Markov processes and the new concept of an underlying ‘Schrödinger
process’ in Section 3. We conclude with some comments on these.

Our first comment is that it could potentially be interesting to
extend the graph calculus used here to quivers (where there can be
self-arrows and multiple arrows between vertices). We have already
seen the need for self-arrows but now we can go one step further to
multiple arrows. One still has a differential calculus in the sense of
part of a DGA but now not all 1-forms need be sums of elements
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of the form adb (Majid and Tao, 2019). One can still do quantum
Riemannian geometry but now a metric is not a number on each
edge but a matrix (Majid and Tao, 2019). In the Markov case, we
could imagine a completely positive matrix, though this remains to
be established. The goal would be to generalise Markov processes
to allow different flavours of transition e.g. due to different types
of processes between vertices. We also note (Pachter and Sturmfels,
2004) concerning the use of graphs with arrows labelled by linear
forms to describe statistical models. Moreover, transitively closed
extended graphs (i.e., preorders) are baby versions of categories and
one could ask if differential geometry could generalise further to
categories in the spirit of Section 5.

Our second comment concerns the notion of geodesics. In non-
commutative geometry, one does not have points, so nor does one
have geodesics as paths. Instead we have to work directly with func-
tions and our first thought might be probability density functions.
However, quantum Riemannian geometry in the constructive form
(Beggs and Majid, 2020) is formulated in a linear setting so one is
led to ‘amplitudes’ ψ in a Hilbert space evolving in time and prob-
ability density f = |ψ|2. This was the motivation behind (Beggs,
2020; Beggs and Majid, 2019) and indeed quantum mechanics seems
to be tightly linked with this point of view. This suggests that the
philosophy of quantum mechanics, the measurement problem and so
forth might be clearer as geodesic flow in quantum geometry. This,
and more generally the role of quantum geometry (which is about
extending macroscopic concepts to the quantum level) in the nature
of measurement are topics for further study.

Indeed, the concrete result in the present paper is that if one goes
further and looks at discrete-time Schrödinger processes in discrete
quantum geometry, then coming out of the discreteness is a correction
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to the familiar equation ḟ = −∇ · J in usual quantum mechanics, in
which there is an extra Markov process induced on f . This has more
of a classical flavour and could play a role in measurement collapse.
Such finite processes should also be of interest in quantum computing,
where finite-dimensional unitary matrices are ‘gates’ and we have
shown how a 1-parameter family of these naturally arises quantum
geometrically.
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