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Abstract
In the paper we discuss the problem of limitations of freedom in
mathematics and search for criteria which would differentiate the new
concepts stemming from the historical ones from the new concepts
that have opened unexpected ways of thinking and reasoning.

We also investigate the emergence of category theory (CT) and
its origins. In particular we explore the origins of the term functor
and present the strong evidence that Eilenberg and Carnap could have
learned the term from Kotarbiński and Tarski.
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1. Introduction

The celebrated dictum of Georg Cantor that “The essence of math-
ematics lies precisely in its freedom” expressed the idea that in

mathematics one can freely introduce new notions (which may, how-
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ever, be abandoned if found unfruitful or inconvenient).1 This way
Cantor declared his opposition to claims of Leopold Kronecker who
objected to the free introduction of new notions (particularly those
related to the infinite).

Some years earlier Richard Dedekind stated that—by forming, in
his theory, a cut for an irrational number—we create a new number.
For him this was an example of a constructed notion which was a free
creation of the human mind (Dedekind, 1872, § 4).

In 1910 Jan Łukasiewicz distinguished constructive notions from
empirical reconstructive ones. He referred (with reservation) to
Dedekind’s statement and pointed out that a consequence of our
“creation” of those notions is the spontaneous emergence of countless
relations which no more depend on our will (Łukasiewicz, 1910).

Until the discovery of non-Euclidean geometries, geometry was
regarded as an abstraction of the spatial reality. The freedom of cre-
ation in geometry was limited by this reality. Hilbert advocated a
formal point of view, broadening the freedom of choosing the ax-
ioms, while Poincaré maintained that the axioms of geometry are
conventions.

Clearly, the freedom of mathematics is limited by logical con-
straints. At the same time, logical inference yields deep meaning to
mathematics. As Michał Heller put it, “If I accept one sentence, I
must also accept another sentence. Why must I? Who forces me?
Nobody. Yet, I must. Generally, we bear badly any restrictions of our
liberty, but in the case of mathematical deduction inevitability of the

1 The italics in the original sentence “Das Wesen der Mathematik liegt gerade in ihrer
Freiheit” are Cantor’s. The first version was published in 1879, reprinted in (Cantor,
1883, p.34), discussed by Ferreirós (1999, p.257).
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conclusion gives us the feeling of safety (I have not deviated from the
way) and of the accompanying intellectual comfort, sometimes even
great joy” (Heller, 2015, p.21).

A mathematician trying to prove a theorem knows the feeling of
an invisible wall which blocks some intended arguments. Also new
concepts must be consistent with earlier ones and must not lead to
contradiction or ambiguity. Moreover, in mathematical practice, only
intersubjective mental constructions are accepted.

The purpose of this paper2 is to look for restraints and patterns
in the historical development of mathematics.3 Some types of paths
will be distinguished, first generally, and then they will be used to
highlight some features of the rise of category theory (CT).

Michael Atiyah, in his Fields Lecture at the World Mathematical
Year 2000 in Toronto, expressed his view that

it is very hard to put oneself back in the position of what it
was like in 1900 to be a mathematician, because so much of
the mathematics of the last century has been absorbed by our
culture, by us. It is very hard to imagine a time when people did
not think in those terms. In fact, if you make a really important
discovery in mathematics, you will then get omitted altogether!
You simply get absorbed into the background. (Atiyah, 2002,
p.1)

This statement may appear startling, as the mathematical meaning
of a text from around 1900 is generally believed to be time-proof.
Yet what Atiyah had in mind was not the meaning of published
texts—definitions, theorems and proofs— but the way mathemati-
cians thought at that time.

2 The present paper is based on a talk delivered at XXIII Kraków Methodological
Conference 2019: Is Logic a Physical Variable?, 7-9 November 2019.
3 The significant question of degree of freedom in mathematical conceptualization of
physical reality is not considered here.
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It was 75 years ago when the celebrated paper by Eilenberg
and Mac Lane was published.4 This event marked the rise of category
theory (CT). As the development of mathematics accelerated in the
second half of the 20th century, it may be hard to fully imagine how
mathematicians thought in 1945. Their definitions, theorems and
comments are clear, but one should be aware that a reconstruction of
their ideas, their thinking may be specifically biased by our present
understanding of the mathematical concepts involved.

2. Background conceptions

The main ideas of this paper—which includes a very wide spectrum of
examples, from ancient Greek mathematics to modern, from children’s
counting to CT—are the following:

• A mathematical concept, no matter how novel, is never indepen-
dent of the previous knowledge; it is based on a reorganization
of existing ideas.

• A radically new mathematical idea never germinate in some-
body’s mind without a period of incubation, usually a lengthy
one.

• There is a long distance to cover between a spontaneous, un-
conscious use of a mathematical idea or structure in a concrete
setting, and a conscious, systematic use of it (Piaget and García,
1989, p.25).
• A person who has achieved a higher level of mathematical

thinking is often unable to imagine thinking of a person from

4 Mac Lane earlier in his life, in particular in (Eilenberg and Mac Lane, 1945) and
(Mac Lane, 1950) wrote his name as MacLane. Later he began inserting a space into
his surname, in particular in (Mac Lane, 1971).
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another epoch or of a present learner and, consequently, may
unconsciously attribute to him/her an inappropriate (too high
or too low) level of thinking.

Transgressions

A mathematical cognitive transgression (or briefly: a transgres-
sion) is defined as crossing—by an individual or by a scientific
community—of a previously non-traversable limit of own mathe-
matical knowledge or of a previous barrier of deep-rooted convictions
(Semadeni, 2015). Moreover, it is assumed that:

1. the crossing concerns a (broadly understood) mathematical
idea and the difficulty is inherent in the idea,

2. the crossing is critical to the development of the idea and related
concepts,

3. it is a passage from a specified lower level to a new specified
upper level,

4. the crossing is a result of conscious activity (the activity need
not be intentional and purposely orientated towards such cross-
ing; generally such effect is not anticipated in advance and may
even be a surprise).

In the history of mathematics there were numerous transgres-
sions of different importance, some great ones and many “mini-
transgressions”. Usually they were not single acts—they involved
a global change of thinking which matured for years or even gener-
ations and they were based on the work of many people. In ancient
times two transgressions were the most significant:
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• The transition from practical dealing with specific geometric
shapes to deductive geometry.

• The celebrated discovery (in the 5th century BC) that the diago-
nals of a square are incommensurable with their sides, that they
are άλογος (a-logos), without a ratio, irrational (in modern set-
ting, foreign to Greek thinking, it was the irrationality of

√
2)

(Baszmakowa, 1975, pp.80-81). The Pythagorean paradigm
was undermined by this απορία (aporia). Their understanding
of mathematics was eroded. However, nothing certain is known
about this discovery. Stories presented in popular books are
based on doubtful legends from sources written seven or eight
centuries later (Knorr, 1975, p.21, 51). This incommensurabil-
ity could not be a single discovery by an individual. It must
have been a lengthy process. Never in the historical develop-
ment of mathematics such a major change occurred in a short
time.

In modern history there were many transgressions. Let us list some of
the best known:

• Acceptance of negative numbers.
• The transition from potential infinity (infinity at a process level)

to the actual infinity (infinity as an object).
• The emergence of projective geometry.
• The discovery of non-Euclidean geometries.

We will discuss the case of CT, arguing in particular that creating
the theory of elementary topoi in CT should be regarded as a major
transgression.
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Phylogeny and ontogeny

The term phylogeny refers here to the evolutionary history of
mathematics (or rather to its modern reconstructions), from ancient
times on. Ontogeny denotes the development of basic mathematical
concepts and structures in the mind of an individual person, from early
childhood. Phylogeny and ontogeny are in some sense complementary
descriptions (Freudenthal, 1984; Piaget and García, 1989, pp.4-29).

In case of mathematics, the oft-quoted phrase: ontogeny recapit-
ulates phylogeny implies that one can learn from the history of old
mathematics for the sake of present teaching. The history of mathe-
matics sometimes gives useful hints, e.g. one may argue that since
the historical process of forming the general concept of a function
took centuries (from Descartes, if not much earlier, to Peano and
Hausdorff), we should not expect that a secondary school student can
grasp it—learning Dirichlet’s description—after a few lessons. The
general concept of the function was not yet quite clear to mathemati-
cians of the first half of the 19th century (Lakatos, 1976, Appendix 2;
Youschkevitch, 1976; Ferreirós, 1999, pp.27–30).

On the other hand, the idea that ontogeny recapitulates phylogeny
may be misleading. Piaget always stressed that arithmetic cognition
results from logico-mathematical experience with concrete objects,
pebbles say, and is educed from the child’s actions rather than from
heard words. It is abstracted from a coordination of intentional mo-
tions and accompanying thoughts. Nevertheless, Piaget was in favour
of the phylogeny-ontogeny parallelism and reasoned roughly as fol-
lows. Since one-to-one correspondence preceded numerical verbal
counting in the very early periods of human civilization (evidenced
by artefacts such as notched bones and also found in crude unlettered
tribes), the same should apply to children. Cantor’s theory of cardinal
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numbers confirmed this thinking (Beth and Piaget, 1966, pp.259–260).
Consequently, Piaget and many educators insisted on one-to-one cor-
respondence as a foundation of early school arithmetic, neglecting
the fact that nowadays children learn number names early, often to-
gether with learning to speak, and moreover counting is now deeply
rooted culturally. Research evidence shows that counting, rather than
one-to-one correspondence, is a basis of the child’s concept of num-
ber (Gelman and Gallistel, 1978, pp.77–82). In this way the phy-
logeny–ontogeny parallelism adversely affected early mathematics
education in the time of the ‘New Math’ movement.

Hans Freudenthal, in the context of mathematics, suggested the
converse idea: What can we learn from educating the youth for under-
standing the past of mankind? This reverses the traditional direction
of inference in the phylogeny–ontogeny parallelism. In particular, one
may ask whether contemporary knowledge of the difficulties in the
transition from the concrete to more abstract mathematical reasoning
of children may be helpful in better understanding of limitations of our
reconstructions of the development of the early Greek mathematics.

In the sequel, certain aspects of the development will be traced
both in phylogeny and in ontogeny, inextricably intertwined with the
the mathematical questions themselves.

Platonizing constructivism in mathematics

The theoretical framework of the paper is platonizing construc-
tivism in mathematics (Semadeni, 2018). It is assumed that:
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• each of the three major positions in the philosophy of math-
ematics from the beginning of the 20th century: platonism,
constructivism, formalism describes some inherent, comple-
mentary features of mathematics;

• these three major positions can be reconciled provided that they
are regarded as descriptive, as an account of some inherent
features of mathematics, and not normative, i.e., when one
leaves out the eliminating words (as ‘only’, ‘oppose’) which
explicitly deny other standpoints. Moreover, various versions
of the three positions often overlap.

In the sequel, the term constructivism will not be understood as in
papers on foundations of mathematics, but rather in a way akin to
its meaning in research on mathematics education, related to post-
Piagetian psychological versions of constructivism. Briefly, one as-
sumes here that humans construct mathematical concepts in their
minds and discover their properties. A concept develops its necessary
structure as a consequence of its context and—in the long term—
becomes cristalline in the sense of David Tall (2013, p.27); then its
properties appear independent of our will. This phenomenon may be
traced both in phylogeny and in ontogeny. Moreover, in each essential
progression, new mental structures are build on the preceding ones
and are always integrated with previous ones (Piaget and García, 1989,
pp.22–29).

By platonizing constructivism we mean an analysis—in construc-
tivistic terms—of sources and consequences of the platonistic atti-
tude of a majority of mathematicians and contrasting them with the
well-known difficulties of consistent platonism in the philosophy of
mathematics.
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3. Developmental successors

After the introductory examples we now look for ways to distinguish
between:

• mathematical concepts which—historically—were natural suc-
cessors to previous ones,

• mathematical concepts which could be conceived and defined
only after opening new paths of thought and reasoning.

The following metaphorical labels will be used: onward development,
branching-off, upward development, downward development. These
labels will be interpreted with examples. We do not expect to find
clear criteria, but the ensuing discussion may be illuminating.

The emergence of numerals in the Late Stone Age is evidenced
by tally marks (in the form of notched bones). Ethnologists have
found that early tribes had only two counting words: one and two,
followed by many. Also in present Indo-European languages these
two numbers and their ordinal counterparts are linguistically different
from the following numbers. It has been suggested that the proto-
Indo-European number *trei (three) was derived from the verb *terh
(meaning: pass); thus, the word three is related to trans. This may be
a hint of a very ancient mental obstacle between numbers two and
three.

One may conjecture that after the passage from 2 to 3 there was
no notable obstacle to gradual development of unlimited counting.
Of course, the actual development took centuries, if not millennia.
Anyway, for present children there is no hurdle between 2 and 3, as
they are taught counting very early. Moreover, counting starts to make
sense with three items.
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Onward development

Onward development of indefinite counting includes its develop-
mental successors: simple addition of natural numbers (which devel-
ops through a stage called count all and then a more advanced stage
count on), subtraction (as taking away), multiplication, division (orig-
inally there are two kinds of it: equal sharing and equal grouping),
and even simple powers, all within some range of natural numbers.

These concepts are included in the onward development of count-
ing, by virtue of the following features:

• no branching: each new concept naturally comes after the
previous ones;

• ontological stability: each concept (e.g., number 17 or the
product 3× 6), remains essentially the same object, although
the related ideas are enriched after each extension of the scope
of arithmetic and—in the historical development—are subject
to evolutionary changes.

The conception of developmental successors, outlined here, does
not take into account a relative difficulty of concepts; what is crucial
is whether these concepts follow the previous lines of thinking.

Branching-off

The concept of “branching-off” arises from a negation of the first
requirement in the description of an onward development. An example
of it are fractions, which branch off from natural numbers; it is not
onward development, although there are many ties between natural
numbers and fractions.
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Fractions could be introduced to children in two ways. In the
first, some idealized whole is divided into m equal parts and then n
of them are taken. In the second, n whole things are equally divided
into m parts. They are two main aspects of the concept of a fraction.
For instance, 3

4 of pizza may be obtained by cutting it into 4 parts
and taking 3 such parts (thus 3

4 = 3× 1
4 ). A more advanced way of

thinking of 3
4 is 3 divided by 4; the latter may be explained with the

example of 3 pizzas to be divided among 4 persons.
The distinction looks quite elementary. Yet, it was significant in

the phylogeny of fractions. First procedure is akin to that of ancient
Egyptians, the second—to Greek ratios; both were inherited by Arabic
mathematicians. In the ontogeny the two ways are always present,
but not necessarily noticed. The following reminiscence by William
Thurston (1946-2012), written 8 years after he had received Fields
Medal, describes his discovery of the identification of previously
different objects.

I remember as a child, in fifth grade, coming to the amazing (to
me) realization that the answer to 134 divided by 29 is 134/29
(and so forth). What a tremendous labor-saving device! To
me, ‘134 divided by 29’ meant a certain tedious chore, while
134/29 was an object with no implicit work. I went excitedly
to my father to explain my major discovery. He told me that of
course this is so, a/b and a divided by b are just synonyms. To
him it was just a small variation in notation (Thurston, 1990,
p.848).

The fraction a
b becomes identified with the result of division a ÷ b

and—in this synthesis—they both form a single mathematical object.
Philosophically, however, it is an ontological change: two different
beings, results of two different mental constructions, become regarded
as a single one.
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Onward branching-off can be traced in many parts of mathemat-
ics. Calculus branches off from a theory of the field of real numbers
(axiomatic or based on a construction). Infinite sequences of real num-
bers branch off from elementary algebra of real numbers. Limits of
sequences branch off from general theory of sequences. These exam-
ples vividly show that the question of distinguishing branching-off
from onward development is delicate, as the criteria are far from being
precise, but it may contribute to better understanding the historical
development of mathematics.

Upward development and downward development

By upward development of a piece of mathematics we mean
passing from some concepts and relations between them to a more
abstract version of them. Examples:

• Transition from practical addition (verbalized as, e.g., two and
three make five) to symbolic version (e.g., 2 + 3 = 5) took
centuries (the sign + appeared in some 15th century records;
the first occurrence of the equality sign = was found in a text
by a Welsh mathematician Robert Recorde from 1557).

• Transition from the space Rn to an axiomatically given vector
space over R.

• Transition from a vector space over R to a vector space over a
field.

• Transition from group theory to the category Grp.
• Transition from a category to a metacategory (in the sense of

(Mac Lane, 1971, pp.7–11)).
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Downward development is—in some sense—an inverse process,
to more concrete questions or to a lower level of abstraction, so the
above examples may be used the other way round. Also some typical
applications of mathematics may be included here, e.g., the passage
from abstract Boolean algebras to a description of certain types of
electrical circuits, as conceived by Claude Shannon (1936).

In the 20th century the mathematics grew rapidly and the upward
development became much easier mentally as a result of both: a
general change of the attitude of mathematicians toward abstraction
and the routine of expressing all concepts in the language of set
theory. Branching-off were so frequent that the above metaphors are
of little use. There is, however, a notable exception: a new theory
which opened a new direction of thinking, so its beginnings may be
discussed in a way akin to that used with respect to distant past.

4. The rise of category theory (CT)

A very special feature of CT is that it has a pretty precise date of
its official birth: the publication of the paper by Samuel Eilenberg
and Saunders Mac Lane (1945). It was presented at a meeting of the
American Mathematical Society in 1942 and published in 1945.

According to the Stanford Encyclopedia of Philosophy, CT “ap-
peared almost out of nowhere”. Not quite so. As in any mathematical
theory, some CT ideas had been conceived much earlier, particularly
in algebraic topology, and some of them can be traced to the 19th

century.
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Many conceptual transformations—either explicit and well recog-
nized or used implicitly, without awareness—contributed to the rise
of CT. Going back, a significant factor was the historic development
of the mathematical concept of a function.

Until the beginning of the 19th century, a general symbol for a
function (f or φ) was almost non-existent (Youschkevitch, 1976).
A significant step toward CT was the general notion of a mapping
introduced by Dedekind in 1888. In his Enklärung (explanation)
he did not define the concept of Abbildung φ (literally: image or
representation) from a set (System) S into a set S′, but interpreted
it generally as an arbitrary law (Gesetz) according to which to each
element s there corresponds (gehört) a certain thing (Ding) S′ = φ(s),
called the image (Bild) of s. He also defined a composed mapping
(zusammengesetzte Abbildung) ϑ(s) = ψ(s′) = ψ(φ(s)) of two given
ones, denoted as φ.ψ or φψ, defined injective mappings (ähnlich
or deutlich), the inverse mapping and proved their main properties
(Dedekind, 1888, §2–4; Ferreirós, 1999, p.88–90, 228–229).

Emmy Noether in her lectures in the 1920s emphasised the role of
homomorphisms in group theory. Before her, groups were understood
as generators and relations (in modern terms, as quotients of free
groups). She also argued that the homology of a space is a group, is
an algebraic system rather than a set of numbers assigned to the space.
Her lectures and the lectures of Emil Artin formed a basis for the
celebrated book by van der Waerden (1930) on modern algebra. This
current of thought led to CT.

Generally, in the symbol of the type f(x), the part f was always
understood as fixed and xwas a variable. At the end of the 1920s, how-
ever, in functional analysis and related fields, a new way of thinking
emerged. In certain situations the roles of symbols in f(x) reversed:
the point x was regarded as fixed while the function f became a vari-
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able (as an element of a function space), e.g., x ∈ [0, 1] was fixed and
f was a variable in the space C([0, 1]) of continuous functions on the
interval [0, 1]. In this new role, the point x became a functional δx on
C([0, 1]). Such a change of the roles function-element became cru-
cial, e.g., in the Potryagin duality of locally compact abelian groups
(Hewitt and Ross, 1963) and in Gelfand’s theory of commutative
Banach algebras. It was also used by Eilenberg and Mac Lane in their
first example (finite dimensional vector spaces and their dual spaces)
motivating the concept of a natural equivalence.

A crucial example of a contravariant functor was the adjoint T ∗

of a linear operator T on a Hilbert space, introduced in 1932 by John
von Neumann.5

According to Mac Lane, abstract algebra, lattice theory and uni-
versal algebra were necessary precursors for CT. However, he also
suggested that certain notational devices preceded the definition of
a category. One of them was the fundamental idea of representing a
function by an arrow f : X → Y , which first appeared in algebraic
topology about 1940, probably introduced by Polish-born topologist
Witold Hurewicz (Mac Lane, 1971, p.29; 1988, p.333). Originally, it
looked as just another symbol, but from a later perspective the use
of such symbol was one of the key changes. Thus, a notation (the
arrow) led to a concept (category). Such new symbols got absorbed
into the background of mathematical thinking, and was later used
as something obvious. Together with commutative diagrams, which
were probably also first used by Hurewicz, they paved the way to CT.

5 Mac Lane (1988, p.330) tells a story of how Marshall Stone advised von Neumann to
introduce the symbol T ∗ and how it changed the publication. He also mentions a fact
which may interests philosophers: in 1929 von Neumann lectured in Göttingen and
presented his axiomatic definition of a Hilbert space, while David Hilbert—listening
to it—evidently thought of it as of the concrete space ℓ2, not in the axiomatic setting.
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Mac Lane often accented two features of mathematics: compu-
tational and conceptual. He noted that the initial discovery of CT
came directly from a problem of calculation in algebraic topology
(Mac Lane, 1988, p.333).

Eilenberg and Mac Lane were aware that they introduced very
abstract mathematical tools, which did not fit any algebraic system
in the Garrett Birkhoff’s universal algebra. It might seem too abstract
and was certainly off beat and a “far out” endeavour. Although it was
carefully prepared, it might not have seen the light of day (Mac Lane,
2002, p.130).

The origin of the term functor

Mac Lane has written Categories, functors, and natural transfor-
mations were discovered by Eilenberg–Mac Lane in 1942 (Mac Lane,
1971, p.29). The word “discovered” may be regarded as an indication
of a hidden Platonistic attitude of Mac Lane, in spite of his verbal
declarations against Platonism (Mac Lane, 1986, pp.447–449; Król,
2019; Skowron, manuscript). He also wrote:

Now the discovery of ideas as general as these is chiefly the
willingness to make a brash or speculative abstraction, in this
case supported by the pleasure of purloining words from the
philosophers: “Category” from Aristotle and Kant, “Functor”
from Carnap (Logische Syntax der Sprache) (Mac Lane, 1971,
pp.29–30).

This sentence has been taken very seriously by several authors. How-
ever, the way it was phrased suggests that it was rather intended to be a
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delicate joke.6 Attributing the origin of the term category to Aristotle
and Kant is clear, although in 1899 René-Louis Baire (in his Thèse)
introduced—in another context—the word category to mathematics.7

Concerning the origin of the term functor in CT, one may recall the
following facts:8

• In Rudolf Carnap’s book Abriss der Logistik (Carnap, 1929)
the term “Funktor” does not appear.

• In 1929 the Polish term “funktor” was used in propositional cal-
culus by Tadeusz Kotarbiński in his book (Kotarbiński, 1929).

• Alfred Tarski often emphasised that Kotarbiński had been his
teacher (Feferman and Feferman, 2004, part 2).

• Carnap met Tarski in Vienna in February 1930 and visited
Warsaw in November 1930; he learned much from Tarski.

6 Let us note that the noun brash means a mass of fragments; according to Cambridge
International Dictionary of English (1995), the adjective brash is disapproving, refer-
ring to people who show too much confidence and too little respect, while Webster’s
New World Dictionary (1984) lists—as meanings of brash—also hasty and reckless,
offensively bold. On the other hand, the word purloining means stealing or borrowing
without permission. Such a comment (with the word pleasure) by Mac Lane concerning
CT could not be serious. On the other hand, in 2002 Mac Lane came back to Carnap,
adding: “Also the terminology was largely purloined: “category” from Kant, “natural”
from vector spaces and “functor” from Carnap. (It was used in a different sense in
Carnap’s influential book Logical Syntax of Language; I had reviewed the English
translation of the book (in the Bulletin AMS 1938) and had spotted some errors;
since Carnap never acknowledged my finding, I did not mind using his terminology)”
(Mac Lane, 2002, pp.130–131).
7 A subset A of a topological space X is called a set of first category (un ensemble de
première catégorie) in X iff A is the union of a countable family of nowhere dense
sets; otherwise it is a set of the second category (Menge erster und zweiter Kategorie).
The celebrated Baire category theorem states, in a generalized form, that a complete
metric space is not a set of the first category (Hausdorff, 1914, p.328; Kuratowski,
1933, § 10). The clumsy term set of the first category was later replaced by the term
a meager set (Kelley, 1955, p.201). In the 1930s Baire category theorem was a very
popular tool in the Warsaw school of topology, so Eilenberg must have known it.
8 The author is indebted to Professor Jan Woleński for the relevant information.
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• In 1933 Tarski, in the Polish version of his famous paper On
the concept of truth in formal languages Tarski (1933) used
the term “funktor” and mentioned that he owed the term to
Kotarbiński.

• Carnap used the term “Funktor” in his book (1934) (quoted by
Mac Lane) in a sense more general than that of Kotarbiński
and Tarski.

• Eilenberg studied mathematics in Warsaw from 1930. In 1931
he attended Tarski’s lectures on logic (Feferman and Feferman,
2004, part 3 and 12). He left Warsaw in 1939.

This evidence strongly suggests that both Carnap and Eilenberg
could have learned, independently, the term from Kotarbiński and
Tarski.

Was the original CT an onward development of previous
mathematical theories?

Using a metaphor explained above, one may argue that the def-
inition of a category and of a functor were within a major onward
development of part of mathematics of the first half of the 20th century,
that is set theory, algebra, topology etc. Indeed, for a person working
in group theory, say, a natural continuation should be to think of all
groups, their homomorphisms, isomorphisms, and the composites as
of a single whole: group theory. Similarly one could think of vector
spaces with linear maps as of another whole. Some analogies between
theories were obvious. Moreover, the axioms of CT are reminiscent of
those of semigroup theory. The concept of a covariant functor was a
natural analogue of homomorphisms of algebras. Contravariant func-
tors had been present in various duality theories (e.g., in Pontryagin’s
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duality mentioned above). CT provided general concepts applicable to
all branches of abstract mathematics, contributed to the trend towards
uniform treatment of different mathematical disciplines, provided op-
portunities for the comparison of constructions and of isomorphisms
occurring in different branches of mathematics, and may occasion-
ally suggest new results by analogy (Eilenberg and Mac Lane, 1945,
p.236).

The great achievement of Eilenberg and Mac Lane was the idea
that a formalization of various evident analogies was worth system-
atizing and publishing. The initial neglect of the paper of Eilenberg
and Mac Lane (1945) by mathematicians was very likely a result
of the fact that it was regarded as a long paper within onward de-
velopment of known part of mathematics, with many rather simple
definitions and examples, tedious verification of easy facts, and no
theorem with an involved proof. Ralf Krömer, in his book on the
history and philosophy of CT, has outright stated that Eilenberg and
Mac Lane needed to have remarkable courage to write and submit for
publication the paper almost completely concerned with conceptual
clarification (Krömer, 2007, p.65).

A novelty of (Eilenberg and Mac Lane, 1945, p.272), which at
first appeared insignificant, was regarding elements p1, p2 of a single
quasi-ordered set P as objects of a category, with a unique morphism
p1 → p2 iff p1 ≤ p2 and no morphisms otherwise. This opened
a way to a series of generalizations, in particular regarding certain
commutative diagrams as functors on small categories.

One may argue that this achievement was still within onward
development of CT as it was within the scope of previous knowledge.
Let us recall that the difficulty and the originality of a theorem are not
taken into account; what is crucial is whether the concepts involved
are natural extension of the previous knowledge and thinking.
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The category axioms represent a very weak abstraction (Goldblatt,
1984, p.25). In spite of this fact, a few years later the conceptual
clarification turned out to be highly effective in the book Foundations
of Algebraic Topology written by Eilenberg together with Norman
Steenrod (1952). The latter admitted in a conversation that the 1945
paper on categories had a more significant impact on him than any
other research paper, it changed his way of thinking.

The Eilenberg-Mac Lane Program

This program has been formulated as follows:

The theory [. . . ] emphasizes that, whenever new abstract ob-
jects are constructed in a specified way out of given ones, it
is advisable to regard the construction of the corresponding
induced mappings on these new objects as an integral part of
their definition. The pursuit of this program entails a simul-
taneous consideration of objects and their mappings (in our
terminology, this means the consideration not of individual
objects but of categories). [. . . ]

The invariant character of a mathematical discipline can be
formulated in these terms. Thus, in group theory all the ba-
sic constructions can be regarded as the definitions of co- or
contravariant functors, so we may formulate the dictum: The
subject of group theory is essentially the study of those con-
structions of groups which behave in a covariant or contravari-
ant manner under induced homomorphisms. More precisely,
group theory studies functors defined on well specified cate-
gories of groups, with values in another such category. This
may be regarded as a continuation of the Klein Erlanger Pro-
gramm, in the sense that a geometrical space with its group of
transformations is generalized to a category with its algebra
of mappings.
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[...] such examples as the “category of all sets”, the “category
of all groups” are illegitimate. The difficulties and antinomies
are exactly those of ordinary intuitive Mengenlehre; no es-
sentially new paradoxes are involved. [...] we have chosen to
adopt the intuitive standpoint, leaving the reader free to insert
whatever type of logical foundation (or absence thereof) he
may prefer. [...]

It should be observed first that the whole concept of a cate-
gory is essentially an auxiliary one; our basic concepts are
essentially those of a functor and of a natural transformation.
[...] The idea of a category is required only by the precept that
every function should have a definite class as domain and a
definite class as range, for the categories are provided as the
domains and ranges of functors. (Eilenberg and Mac Lane,
1945, p.236–237, 246–247)

The quoted comparison of CT to the celebrated program of Felix
Klein shows vividly that the authors regarded their work as significant.
An important novelty of (Eilenberg and Mac Lane, 1945) was to use
the same letter to denote both: the object component of a functor and
its morphism component. This had not been a common practice, even
when these correspondences were dealt with in a single paper. This
novelty and the whole program fit well Atiyah’s conception (quoted
above) of ideas absorbed by mathematicians’ culture.

CT is both a specific domain of mathematics and at the same time
a conceptual framework for a major part of modern theories.

5. The amazing phenomenon of unexpected
branchings-off in CT

Up to this point CT might be regarded as being within onward de-
velopment of earlier theories: algebra, topology, functional analysis.
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However, a branching-off in (Eilenberg and Mac Lane, 1945) is the
concept of a natural equivalence (central in the title of the paper),
with an essential use of commutative diagrams.9 It was a completely
new idea, but its initial impact was limited.

After 1945 CT—as a general theory—lay dormant till the emer-
gence of significant new concepts and a breaking series of major
branchings-off in the second half of the 1950s. One of their outstand-
ing features was a new type of a definition, formulated in the form of
a unique factorization problem.

First such explicit definition appeared in the paper by Pierre
Samuel (1948), a member of the Bourbaki group, on free topologi-
cal groups, albeit it was still in the language of set theory, without
arrows. Two years later commutative diagrams were demonstrated as
a convenient tool in such problems by Mac Lane (1950). The concept
of a dual category, formulated by Eilenberg and Mac Lane in (1945,
p.259) and further developed by Mac Lane (1950), had its concep-
tual roots in various duality theories, particularly in that of projective
geometry.

The product of two categories was an analogue of that for groups
and various algebras. Mac Lane analysed the concept of duality,
stressed diagrammatic dualities of various pairs of concepts and pre-
sented the definitions of direct and free products in group theory (later
generalized to the concepts of categorial products and coproducts,
respectively).

9 It is not clear why Eilenberg and Mac Lane refrained from setting the concept in the
general form of a natural transformation (examples abounded). Perhaps they felt they
should not pursue a still more general setting without accompanying results.
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Ametamorphosis from Eilenberg–Mac Lane Program to
mature CT

A turning point in the development of CT was the seminal pa-
per by Daniel Kan (1958) on adjoint functors. In much the same
time period, independently, several closely related concepts and re-
sults were worked out: representable functors, universal morphisms,
Yoneda lemma, various types of limits and colimits (Mac Lane, 1988,
pp.345–352). Special cases of them had a long earlier history in spe-
cific situations in algebra and topology (e.g., Freudenthal’s theorems
on loops and suspensions in homotopy theory proved in 1937). This
confirms a known phenomenon that mathematicians may use an idea
spontaneously, without being conscious of it in a more abstract setting.

Mac Lane (1950) also opened the way to the study of categories
with additional structure, which some years later developed to the
study of abelian categories. This topic was developed—in a remark-
ably short time—due to the work of Alexandre Grothendieck, David
Buchsbaum, Pierre Gabriel, Max Kelly and authors of two mono-
graphs: Peter Freyd (1964) and Barry Mitchell (1965).

Within 20 years CT, originally conceived as a useful language
for mathematicians, became a developed, mature theory, something
totally unexpected by its founders.

Set theory without elements

The results of the work of William Lawvere turned out to be
not only a new branch of CT, but also opened new perspectives in
mathematics, logic, foundations of mathematics, and philosophy. In
his Ph.D. thesis at Columbia University in New York, supervised by
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Eilenberg (defended in 1963, known from various copies, with full text
published 40 years later) many new ideas were presented, including a
categorical approach to algebraic theories (Lawvere, 1963).

Lawvere also tackled the general question as to what conditions
a category must satisfy in order to be equivalent to the category Set.
The idea looked analogous to the so-called representation theorems,
i.e., propositions asserting that any model of the axioms for a certain
abstract structure must be (in some prescribed sense) isomorphic to
a specific type of models of the theory or to one particular concrete
model.10 However, Lawvere’s case was unique and controversial in
the sense that his ‘sets’ were conceived without elements. The theory
did not have the primitive notion “element of”. And it did work.

Specifically, Lawvere characterized Set (up to equivalence of
categories) as a category C with the following: an initial object 0;
a terminal object 1 (which gives rise to elements of A defined as
morphisms from 1 to A); products and coproducts of finite families of
objects; equalizers and coequalizers; for any two objects there is an
exponential; existence of a specific object N with morphisms 0: 1→
N and s : N → N yielding the successor operation s on N and a
simple recursion for sequences; axiom that 1 is a generator (if parallel
morphisms f, g are not equal, then there is an element x ∈ A such that
xf ̸= xg); axiom of choice; three additional elementary axioms of
this sort (everything in the language of CT). This was augmented with
one non-elementary axiom: C has products and coproducts for any
indexing infinite set. A coproduct of copies of 1 played the role of a set
(Lawvere, 1964; Mac Lane, 1986, pp.386–407; 1988, pp.341–345).

10 The oldest theorems of this type are: Cayley’s theorem that every (abstract) group is
isomorphic to a group of bijections of a set; Kuratowski’s theorem that every partially
ordered set is order-isomorphic to a family of subsets of a set, ordered by inclusion;
theorem that every group with one free generator is isomorphic to Z. Analogous
examples are known in many theories.
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The point was not to avoid membership relation completely, but
(instead of taking as the starting point the primitive notions of set,
element and membership ∈) function may be taken as a primitive
notion of the theory (with suitable axioms, using elementary logic,
but avoiding any reference to sets) and then one derives membership
and most concepts of set theory as a special case from there.

In the second half of the 1960’s Lawvere opened a way to a new
theory of elementary toposes (called also elementary topoi, with Greek
plural τ óπoι of the noun τ óπoς). Unexpected territories of mathemat-
ics were discovered (Lawvere, 1972; Mac Lane, 1988, pp.352–359;
Krömer, 2007).

CT became a contender for a foundation of mathematics, although
the hope that it undermine the overwhelming role of set theory turned
out unfounded and most working mathematicians keep away from CT
and toposes. CT yields new tools to study many formal mathemati-
cal theories and mutual relations between them, from a perspective
different from that set theory.

6. Recapitulation of some points

Let us recall Atiyah’s remark (quoted in the Introduction) that really
important discoveries get later omitted altogether as they become
absorbed by the general mathematical culture. This thought fits par-
ticularly well with the case of CT. Most of the ideas presented by
Eilenberg and Mac Lane in 1945 have been absorbed as a natural
language of advanced mathematical thinking. Once mathematicians
learnt the definitions of a functor and a natural transformation, these
concepts became a major tool of mathematical reasoning in many ab-
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stract theories of the second half of the 20th century. However, it took
several years to realise the scope of the change. Freyd commented as
follows:

MacLane’s definition of “product” (1950) as the solution of
a universal mapping problem was revolutionary. So revolu-
tionary that it was not immediately absorbed even by most
category minded people.

[...] In a new subject it is often very difficult to decide what is
trivial, what is obvious, what is hard, what is worth bragging
about (Freyd, 1964, p.156).

Mac Lane, however, used the definition of a product and its dual only
in the case of groups (general or abelian). He did not formulate it
mutatis mutandis in the general case of a category, although he had
several simple examples at hand. Freyd also told the story of the term
exact sequence, a technical definition in homological algebra. In the
late 1950’s, when he was a graduate student at Brown University, he
was brought up to think in terms of exactness of maps. This concept
seemed to him as fundamental as the notion of continuity must seem
to an analyst. And later he was astonished to hear that when Eilenberg
and Steenrod wrote their fundamental book (1952) they defined this
very notion, recognized the importance of the choice of a suitable
name for it, yet could not invent any satisfactory word. Consequently,
they wrote the word “blank” throughout most of the manuscript,
ready to replace it before submitting the book for publication. After
entertaining an unrecorded number of possibilities they settled on
“exact” (Freyd, 1964, p.157).

One may argue that the 1945 definitions of a category and of a
functor were within a major onward development of abstract algebra
and other advanced topics. In fact, originally they were not regarded
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as a novelty. Eilenberg and Mac Lane were not even certain whether
their paper will be accepted for publication (it was long and lacked
theorems with substantial proofs). However, they were genuinely
convinced of the significance of their conceptual clarification and took
pains to write the paper clearly to attract the reader.

After this publication for almost ten years CT appeared dormant.
The groundbreaking papers on abelian categories by Buchsbaum
and Grothendieck marked a far-reaching change. And then—in the
1960’s—CT unexpectedly started to grow rapidly, with astonishing
results (Mac Lane, 1988, pp.338–339, 341–361).

Thus, from the present perspective, in spite of the previous ar-
guments, one can say that the emergence of CT was undoubtedly a
major transgression in mathematics. It was a crossing of a previously
non-traversable barrier of deep-rooted habits to think of mathematics.
A vivid argument is the fact that—even after publication of the main
ideas—it was so difficult to overcome the previous inhibition and
widespread tradition.11

The creators of CT and their followers could choose their defi-
nitions freely, nobody could forbid that. And yet the previous way
of thinking was an obstacle for potential authors and for prospective
readers. Great insight of Eilenberg and Mac Lane of what is significant
in mathematics turned out a crucial factor.

11 Many mathematicians, in USA and elsewhere, expressed disinclination about CT.
Karol Borsuk, an outstanding topologist, the teacher of Eilenberg in Warsaw and
coauthor of their joint paper published in 1936, was later critical of CT and the
categorical methods in mathematics (Jackowski, 2015, p.30). Jerzy Dydak, a student of
Borsuk, recalled after years: My own PhD thesis written under Borsuk in 1975 makes
extensive use of category theory and I was asked by him to cut that stuff out. Only
after I assured him that I spent many months trying to avoid abstract concepts, he
relinquished and the thesis was unchanged (Dydak, 2012, p.92).
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eds. Category Theory in Physics, Mathematics, and Philosophy [Online],
Springer Proceedings in Physics 235. Springer International Publishing,
pp.21–32. Available at: https://doi.org/10.1007/978-3-030-30896-4
[visited on 1 November 2020].

Kuratowski, K., 1933. Topologie. 1, Espaces Métrisables, Espaces Complets,
Monografje Matematyczne t. 3. Warszawa; Lwów: s.n.

Lakatos, I., 1976. Proofs and Refutations: The Logic of Mathematical Dis-
covery. Ed. by J. Worrall and E. Zahar. Cambridge [etc.]: Cambridge
University Press.

Lawvere, F.W., 1963. Functorial semantics of algebraic theories. Proceedings
of the National Academy of Sciences of U.S.A. [Online], 50, pp.869–872.
Available at: https://www.pnas.org/content/pnas/50/5/869.full.pdf
[visited on 29 October 2020].

Lawvere, F.W., 1964. An elementary theory of the category of sets. Proceed-
ings of the National Academy of Sciences of the U.S.A. [Online], 52(6),
pp.1506–1511. Available at: https://doi.org/10.1073/pnas.52.6.1506
[visited on 1 November 2020].

Lawvere, F.W., ed., 1972. Toposes, Algebraic Geometry and Logic, Lecture
Notes in Mathematics 274. Berlin; Heidelberg; New York: Springer.

https://doi.org/10.1007/978-3-030-30896-4
https://www.pnas.org/content/pnas/50/5/869.full.pdf
https://doi.org/10.1073/pnas.52.6.1506


64 Zbigniew Semadeni

Łukasiewicz, J., 1910. Über den Satz des Widerspruchs bei Aristoteles. Bul-
letin International de l’Académie des Sciences de Cracovie, 1-2, pp.15–
38.

Mac Lane, S., 1950. Duality for groups. Bulletin of the American Math-
ematical Society [Online], 56(6), pp.485–516. Available at: https : / /
projecteuclid . org / euclid . bams /1183515045 [visited on 29 October
2020].

Mac Lane, S., 1971. Categories for the Working Mathematician, Graduate
Texts in Mathematics 5. New York: Springer-Verlag.

Mac Lane, S., 1986. Mathematics: Form and Function. New York [etc.]:
Springer-Verlag.

Mac Lane, S., 1988. Concepts and Categories in Perspective. In: P. Duren,
R. Askey and U. Merzbach, eds. A Century of Mathematics in America,
Part I [Online], History of Mathematics 1. Providence, R.I.: American
Mathematical Society, pp.323–365. Available at: https : / /www.ams .
org/publicoutreach/math-history/hmath1-maclane25.pdf [visited on
29 October 2020].

Mac Lane, S., 2002. Samuel Eilenberg and categories. Journal of Pure and
Applied Algebra [Online], 168(2-3), pp.127–131. Available at: https:
//doi.org/10.1016/S0022- 4049(01)00092- 5 [visited on 29 October
2020].

Mitchell, B., 1965. Theory of Categories, Pure and Applied Mathematics. A
Series of Monographs and Textbooks 17. New York; London: Academic
Press.

Piaget, J. and García, R.V., 1989. Psychogenesis and the history of science
(H. Feider, Trans.). New York: Columbia University Press.

Samuel, P., 1948. On universal mappings and free topological groups. Bulletin
of the American Mathematical Society [Online], 54(6), pp.591–598.
Available at: https://projecteuclid.org/euclid.bams/1183512049 [visited
on 29 October 2020].

Semadeni, Z., 2015. Transgresje poznawcze jako istotna cecha rozwoju
matematyki. In: R. Murawski, ed. Filozofia matematyki i informatyki.
Kraków: Copernicus Center Press, pp.65–90.

https://projecteuclid.org/euclid.bams/1183515045
https://projecteuclid.org/euclid.bams/1183515045
https://www.ams.org/publicoutreach/math-history/hmath1-maclane25.pdf
https://www.ams.org/publicoutreach/math-history/hmath1-maclane25.pdf
https://doi.org/10.1016/S0022-4049(01)00092-5
https://doi.org/10.1016/S0022-4049(01)00092-5
https://projecteuclid.org/euclid.bams/1183512049


Creating new concepts inmathematics: freedom and limitations. . . 65
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