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Abstract
The interaction between syntax (formal language) and its semantics
(meanings of language) is one which has been well studied in cat-
egorical logic. The results of this particular study are employed to
understand how the brain is able to create meanings. To emphasize
the toy character of the proposed model, we prefer to speak of the
homunculus brain rather than the brain per se. The homunculus brain
consists of neurons, each of which is modeled by a category, and
axons between neurons, which are modeled by functors between the
corresponding neuron-categories. Each neuron (category) has its own
program enabling its working, i.e. a theory of this neuron. In analogy
to what is known from categorical logic, we postulate the existence of
a pair of adjoint functors, called Lang and Syn, from a category, now
called BRAIN, of categories, to a category, now called MIND, of theo-
ries. Our homunculus is a kind of “mathematical robot”, the neuronal
architecture of which is not important. Its only aim is to provide us
with the opportunity to study how such a simple brain-like structure
could “create meanings” and perform abstraction operations out of its
purely syntactic program. The pair of adjoint functors Lang and Syn
model the mutual dependencies between the syntactical structure of a
given theory of MIND and the internal logic of its semantics given
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by a category of BRAIN. In this way, a formal language (syntax) and
its meanings (semantics) are interwoven with each other in a manner
corresponding to the adjointness of the functors Lang and Syn. Higher
cognitive functions of abstraction and realization of concepts are also
modelled by a corresponding pair of adjoint functors. The categories
BRAIN and MIND interact with each other with their entire struc-
tures and, at the same time, these very structures are shaped by this
interaction.

Keywords
categorical logic, syntax-semantics, mind-brain.

1. Introduction: On the Computer Screen

We were preparing a paper for publication. A phase portrait
was nicely displayed on the computer screen. The network of

trajectories represented a class of solutions to the equation we were
interested in. At some points, called critical points, certain trajectories
crossed each other. These points were important for our analysis.
Some of the diagrams we worked with appeared later as figures in
our publication (Woszczyna and Heller, 1990). The figures had to be
explained, so we decided to attach appropriate labels to some of the
critical points. We attached the label “stable saddle” to one of them.
No problem. Then we proceeded to attach the label “unstable saddle”
to another one. But the label jumped up. We tried to fix it up, but it
jumped down. Then we started laughing. After all, it is an unstable
point!
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Let us try to understand the situation. We were investigating
an equation that (virtually) contains in itself its space of solutions
(irrespectively of whether we explicitly know them or not). Through
the suitable computer program and some “electronic circuits”, which
are activated by the program, this space of solutions is mapped into
the phase portrait displayed on the computer screen. The diagram we
see on the screen is certainly something more than just a picture. It
does not simply show stable and unstable critical points; it also does
what the abstract equation orders its solutions to do (labels jump up
and down at instabilities).

Let us go a step forward. In fact, the phase portrait on the screen is
a substitute of the world. For suppose that our equation “describes” (or
better—models) a mechanical system (e.g., a pendulum or oscillator).1

Then the unstable critical points of our equation correspond to physical
situations in which the considered mechanical system behaves in an
unstable way. We thus have, on the one hand, an equation (or a
set of equations) or, more broadly, a mathematical theory and, on
the other hand, a domain (or an aspect) of the physical world of
which the considered mathematical theory is a model. Between the
mathematical model and the domain (or aspect) of the physical world
there is a mysterious correspondence—a correspondence in the root-
meaning of this word: both sides co-respond to each other. It is an
active correspondence, and the activity goes both ways: it looks as if
the domain of the world informed the theory about its own internal
structure, and the theory answered by prescribing what the domain
should do. And the domain does it. The equations prescribe what the
world should do, and the world executes this. The equations and the
world are coupled with each other and act in unison.

1 The equations we considered in our publication referred to a cosmological situation.
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And the screen on my computer? It is a part of the world. The
program we have constructed reads the structure of the equations
and executes what the equations tell it. And because of the coupling
between the equations and the world, the computer does, in miniature,
what does the world on its own scale. This is the reason why computers
are so effective in our reading of the structure of the world.

There is another domain in which a formal structure reveals its
effective power and produces real effects. Such processes occur in
the brain. The formal structure in question consists of electric signals
propagating along nerve fibres between neurons across synapses, and
the world of meanings should be regarded as a product of this activity.
The interaction seems to go both ways: the “language of neurons”
(what happens in the brain) produces the meanings related to this
language (in the mind), and the meanings somehow influence the
architecture of neurons.

It seems that in both these cases (mathematical laws and their
effects in the real world, and the brain–mind interactions) we meet
two instances of the same working of logic where syntax (a formal
structure), by effectively interacting with its semantics, produces real
effects. This kind of interaction, although kept strictly on the level of
logic (i.e. with no reference to processes in the real world), is well
known in the categorical logic. In the present paper, we attempt to
employ these achievements of categorical logic to try to understand
the brain–mind interaction.

The traditional terminology of brain and mind (irrespective of
current trends in cognitive sciences to get rid of their conceptual
load) seems especially well adapted to the present context in which
general ideas are more important than structural details. Moreover, to
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avoid too hasty associations with the human brain and to emphasize
the toy character of the proposed model, we prefer to speak of the
“homunculus brain” rather than just of brain.

The action of our argument develops along the following lines.
Section 2 is a reminder on formal language, its syntax and semantics.
Sections 3 and 4 briefly review those parts of categorical logic that
refer to these concepts. Every category, call it C, has its internal logic,
and if this logic is sufficiently rich, the category provides semantics
for a certain formal theory T . Moreover, there exists a pair of adjoint
functors, called Lang and Syn, from a category, called CATEGORIES,
of categories belonging to a certain class (for instance, coherent cate-
gories) to a category, called THEORIES, of theories and vice versa,
which describe mutual dependencies between the syntactical structure
of T and the internal logic of its semantics given by C. This is de-
scribed in section 3. In this way, syntax and semantics are interwoven
with each other in a manner corresponding to the adjointness of the
functors Lang and Syn. This is explored in section 4. In section 5, we
consider a deep categorical duality between the syntactic category of
a theory and its individual models and suggest a functional interpreta-
tion in terms of abstraction and realization of concepts, in anticipation
of the cognitive interpretation to be introduced next. In section 6, the
category CATEGORIES becomes the category BRAIN. It constitutes
a simple model of a homunculus’ brain. Objects of this category are
categories (belonging to a certain class); every such category models a
neuron. Morphisms of this category model signals propagating along
nerve fibres between neurons. The category THEORIES becomes the
category MIND. Its objects are “theories of neurons”; more precisely,
if C ∈ BRAIN, then its “theory” is Lang(C) in MIND. Morphisms of
this category are functors between the corresponding syntactic theo-
ries; more precisely, if T1, T2 ∈MIND, then the morphism between
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them is Syn(T1)→ Syn(T2). The pair of adjoint functors Lang and
Syn model the interaction between the syntax of “theories” and their
semantics, i.e. the network of neurons. The categories BRAIN and
MIND are indeed somehow related to what their names refer to, at
least as far as homunculus’ brain and mind are concerned.

Following the seminal paper of McCulloch and Pitts, published as
early as in 1943, which proposed using classical logic to model neural
processes in the brain, there have been so many papers developing
and modifying (with various logical systems) this idea, that to quote
even a sample of them would be immaterial (for a relatively recent
state of art see a short review Koch, 1997). A. Ehresmann claims that
it was R. Rosen who was the first to employ category theory to model
biological systems. A series of works followed (a non-representative
sample: (Gómez and Sanz, 2009; Healy and Caudell, 2006; Mizraji
and Lin, 2011; Tsuchiya, Taguchi and Saigo, 2016)) proposing the
use of various parts of category theory to model different aspects
of the brain activity. In particular, adjoint functors were suggested
to model “a range of universal-selectionist mechanisms” (Ellerman,
2015). However, we have not been able to find anything similar to
modeling the interaction between brain’s language and its meaning
anywhere.

2. Syntax and Semantics

In linguistics, syntax and semantics are regarded as parts of semiotics,
the study of signs. Syntax studies relations between signs, and seman-
tics relations between signs and what the signs refer to.2 Syntactic

2 Sometimes one also distinguishes pragmatics which studies relations between signs
and their users.
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properties are attributed to linguistic expressions entirely with respect
to their shape (or form). Semantics, on the other hand, endows them
with meaning by referring signs to what they signify. Logic adapts
these ideas to its own needs. Since it is a formal science, the signs it
considers should be elements of a formal language, and they cannot
refer to anything external. Halvorson puts it, “But a formal language
is really not a language at all, since nobody reads or writes in a formal
language. Indeed, one of the primary features of these so-called formal
languages is that the symbols don’t have any meaning” (Halvorson,
2016). This is why the meaning should be “artificially” constructed
for them. The idea of how this should be done can best be seen in
Tarski’s prototype of this procedure (Tarski, 1933). If a sentence s,
the truth of which we want to define, belongs to a language L then
the definition of s should be formulated in a metalanguage M with
respect to the language L. And the metalanguage M should contain
a copy of s so that anything one can say with the help of s in L, can
also be said in M . The definition of “True” should be of the form

For all x, True(x) if and only if φ(x)

with the condition that “True” does not occur in φ. Here x stands for
the copy of the sentence s in the metalanguage L, and φ(x) describes,
also in M , the state of affairs of which the sentence s in L reports (for
more details see Hodges, 2018; Sher, 1999). A metalinguistic copy
of s could also be expressed as “s” (taken in quotes). In Tarski’s own
example:

“It snows” is true iff it snows.

For pedagogical reasons, this example is taken from colloquial lan-
guage, but strictly speaking Tarski’s definition refers to formal lan-
guages. The formal language L has its own syntax (since it is a formal
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language), but is lacking its semantic reference. As we have seen,
such a reference had to be constructed for it with the help of the
metalanguage M .

Now, the idea is to improve the situation by looking for such a
conceptual context in which a semantics for a given theory would
arise in a more natural (or even spontaneous) way.

3. Categorical Semantics

To do so we must first define precisely what we mean by language.
Since the definition must be precise, let us choose as an example the
language of mathematics based on standard first order logic (which
is enough for most of the usual mathematics). Many other languages
may be formalized in a similar way. In such a language we distinguish:

• constants: 0, 1, 2, . . . , a, b, c, . . . , and variables: x, y, z, . . . ,
which can be combined by primitive operations to give
• terms, for example: x+ y, x3, . . . which, in turn, can be com-

bined, with the help of primitive relations, such as =, <,≤, . . . ,
to produce

• formulae, for example: x + y = z, x ≤ y, . . . which, in turn
can be combined, with the help of the usual logical connectives
and quantifiers, into

• more complicated formulae.

To make the language more flexible and more adapted for concrete
applications, we diversify its expressions into various types (called
also sorts). In mathematics, we might use different letters for natural
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and real numbers, or different symbols for vectors an scalars. We say
that, in both cases, we are using a two-typed language. There may be
languages with as many types as is needed.

What we need is not so much a language, but rather a theory.
In mathematical logic theory is almost the same as language; it is a
formal language aimed at axiomatizing a certain class of sentences.
The concept of theory, as it is functioning in modern physics can, in
principle, be regarded as the special case of the logical concept of
theory, although in scientific practice theories are rarely formulated
with the full logical rigor.

Let then T be a theory expressed in a multi-type language. Such
a theory is defined as consisting of the following data:

1. A set of types {X1, X2, . . . , X, Y, . . . }.
2. A set of variables {x, y, z, . . . , x1, x2, x3, . . .} with a type as-

signed to each variable.
3. A set of function symbols with a type assigned to each domain

and codomain of every function symbol; for instance, to the
term x1 + x2, with the variable x1 of type X1 and the variable
x2 of type X2, there corresponds the function symbol f : X1×
X2 → Y , and the term f(x1, x2) = x1 + x2 is of type Y .

4. A set of relation symbols with a type assigned to each argument
of every relation symbol; for instance, to the formula x+y = z,
with the variable x of type X1, the variable y of type X2 and
the variable z of typeX3, there corresponds the relation symbol
R ⊆ X1 ×X2 ×X3, and R(x, y, z) is an atomic formula.

5. A set of logical symbols.
6. A set of axioms for a given theory built up from terms and

relation symbols with the help of logical connectives and quan-
tifiers, respecting types of all terms.
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This is, in fact, a purely syntactic definition of theory (for details see
Borceux, 1994, pp.344–348; Mac Lane and Moerdijk, 1992, pp.527–
530). Now, we want to create a semantics, i.e. a model, for a theory
T . This is done by constructing a category CT which will serve us as
such a model. The construction is almost obvious:

1. each type of T is an object of CT ,
2. for each function symbol f in T with types A and B as its

domain and codomain, correspondingly, f is a morphism from
the object A to the object B in CT ,3

3. variables are identity morphisms in CT ,
4. for each relation symbol R in T , its counterpart in CT is a

subobject in CT . Suppose ϕ is a subobject of an object A in
CT then, by analogy with the usual theory of sets, ϕ can be
thought of as a collection of all things of type A that verify ϕ.

This definition must be supplemented with all of the (first order) logic
which is used to express axioms in T (for details see nLab, 2017).
Roughly speaking, since formulae correspond to subobjects, and all
subobjects of a given object are partially ordered by inclusions (they
form a poset), the axioms can be expressed in terms of the order
relation on the subobject poset in the category CT . The category,
defined in this way, is appropriately called the categorical semantics
for a theory T .

We have thus created (almost automatically!) a domain (the cat-
egory CT ) the theory T refers to. The internal architecture of the
category CT exactly matches the logic involved in the theory T .

Let us also mention that, vice versa, having a (sufficiently rich)
category C ′, we can construct the formal theory T ′ the logic of which

3 Since f is now regarded as being in CT rather than in T , it should formally be
denoted by a different symbol such as [f ], but we omit such formalities for present
purposes.
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matches the internal architecture of the category C ′. This can be
done by reading the above definition of the categorical semantics
“backwards”, i.e. we regard objects of C ′ as types of T ′, identity
morphisms of C ′ as variables in T ′, etc. The theory T ′, reconstructed
in this way from the category C ′, is called internal logic of C. This
entire process can be regarded as a functor, called Lang, from a
category of categories, call it CATEGORIES, to a category of theories,
call it THEORIES,

Lang: CATEGORIES→ THEORIES.

For the time being this definition remains informal since neither
CATEGORIES nor THEORIES have been properly defined, but it
will be done below.

Let us start with a formal theory T . We now want to organize it
into a category Syn(T ), called the syntactic category of T . It is done
in the following way.

Let Γ be a collection of type assertions, i.e. a collection of rules
assigning a type to each term of a given theory, and Φ a collection
of all well-defined formulae of T . The pair (Γ,Φ) is called a context.
It is a formalization of what in ordinary language one means by this
term.

If T is a type theory, its syntactic category, Syn(T ), is defined as
follows. Its objects are contexts (Γ,Φ) and its morphisms (Γ,Φ)→
(∆,Ψ) are interpretations (or substitutions) of variables. The latter
means that for each type, prescribed by ∆, we must construct an
expression of this type out of data contained in Γ. In general, this is
done by substituting terms from Γ for variables in ∆. We must also
present, for each assumption required by ∆ (if there are any), a proof
of this assumption from the assumptions contained in Γ (for details
see Fu, 2019; nLab, 2020c).
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The category Syn(T ), constructed in this way, is also called a
category of contexts (for details see Fu, 2019; nLab, 2020b)).

Since from a theory T we have constructed the category Syn(T ),
we can have a functor,

Syn: THEORIES→ CATEGORIES

provided we define the categories THEORIES and CATEGORIES.
We do this in the next section.

4. Syntax–Semantics Interaction

Let us start with objects for both of these categories. It is obvious that
they will be categories and theories, respectively. To have workable
categories, one must restrict the class of theories as candidates of
being objects in THEORIES (and analogously for CATEGORIES).
The criterion one follows is the kind of logic that underlines a given
theory. It could be what logicians call: finite product logic, regular
logic, coherent logic, geometric logic, etc.4 For our further analysis it
is irrelevant which one will be chosen. However, for the sake of con-
creteness we may think about coherent logic. Roughly speaking, this
is a fragment of the first order logic which uses only the connectives
∧ and ∨, and the existential quantifier. Large parts of mathematics
can be formalised with the help of this logic. To this logic there corre-
spond coherent theories and coherent categories. They will constitute
objects of THEORIES and CATEGORIES, respectively. Morphisms
for CATEGORIES are obviously functors between corresponding cat-
egories; for instance coherent functors for coherent categories (nLab,

4 As it could be expected, the internal logic of the corresponding semantic category
will be of the corresponding kind, i.e. finite product logic, regular logic, etc. (nLab,
2017).



The homunculus brain and categorical logic 265

2011). Let now T1 and T2 be objects in THEORIES. A morphism
T1 → T2 is a functor between their corresponding syntactic theories
Syn(T1)→ Syn(T2). Roughly speaking, this means that it is possible
to express (to interpret) T1 in terms of T2 (for details and discussion
see Halvorson and Tsementzis, 2017).5

As a side remark let us notice that by studying the category
THEORIES, we could learn “how individual theories sit within it, and
how theories are related to each other” (Halvorson and Tsementzis,
2017, p.413). This is nicely consonant with a newer trend in the
philosophy of science to investigate the so-called inter-theory relations
(Batterman, 2016; Rosaler, 2018).

A truly remarkable fact is that the functors Lang and Syn con-
stitute a pair of adjoint functors. Let us explain precisely what this
means.

Let us consider any pair of objects: C of CATEGORIES and T of
THEORIES. Adjoint functors serve to compare them. However, they
cannot be compared directly since they live in different categories.
Adjoint functors serve to move each of them to the correct category
so as to enable the comparison. Let us follow this process step by step
(Simmons, 2011, pp.148-153).

Let us first consider the object T which lives in THEORIES. We
want to compare it with the object C which lives in CATEGORIES.
We thus move C to THEORIES with the help of the functor Lang to
obtain the object Lang(C). We now make the comparison with the
help of a suitable morphism,

f : Lang(C)→ T

5 Strictly speaking, CATEGORIES is a 2-category (since its objects are categories and
morphisms are functors), and THEORIES is a 2-category, in this case, called also a
doctrine (nLab, 2020a).



266 Steve Awodey, Michael Heller

in THEORIES. We do the same starting with C in CATEGORIES and
T in THEORIES, and compare C with Syn(T ),

g : C → Syn(T )

in CATEGORIES. To complete the definition of adjunction we de-
mand that morphisms f and g should constitute a pair of bijections
which is natural both in C and T (see below).

The above definition can be put into a concise form

(1) THEORIES(Lang(C), T ) ∼= CATEGORIES(C,Syn(T )),

expressing an isomorphism between the right and left hand sides of
this formula that is natural in C and T . The latter condition says that
when C varies in CATEGORIES and T varies in THEORIES, the
isomorphism between morphisms Lang(C)→ T in THEORIES and
C → Syn(T ) in CATEGORIES vary in a way that is compatible with
the composition of morphisms in CATEGORIES and THEORIES,
correspondingly, and with the actions of Lang and Syn on both these
categories (see Awodey and Forssell, 2013; Leinster, 2014, pp.50-
51).6

We should notice that in the above definition, in fact, we not
only compare objects of two different categories, but rather categories
themselves (objects C and T are any pair of objects). Moreover, com-
paring two categories we are not so much interested in their objects,
but rather in morphisms between objects. This is clear from the fact
that at the end, we have identified those morphisms of two categories
that are pairwise naturally isomorphic among themselves.

6 For a full definition of adjoint functors see any textbook on category theory.
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As we can see, categorical logic does not simply create a seman-
tics for a given language, but shows that dependencies between them
go both ways: in a sense, syntax and semantics create each other. More
precisely, they condition each other through the adjointness relation.

5. Realization and Abstraction

There is another aspect of categorical logic that we shall make use of,
and it may be seen as a mathematical description of the processes of
abstraction and realization of concepts. The category Syn(T ) repre-
senting a theory T may be regarded as presenting a general concept,
of which the theory T is a particular syntactic description. For ex-
ample, there is a theory TGroup consisting of a single basic type X,
and function symbols ∗ : X ×X → X and (−)−1 : X → X and a
constant u : X, together with the usual equations for groups as its
axioms:

x ∗ (y ∗ z) = (x ∗ y) ∗ z
x ∗ u = x

u ∗ x = x

x ∗ x−1 = u

x−1 ∗ x = u

The syntactic category Syn(TGroup) then represents the general con-
cept of a group. This concept can also be represented by another
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theory T ′
Group with a different choice of basic equations, or even a

different choice of operations,7 as long as the resulting categories
Syn(TGroup) and Syn(T ′

Group) are equivalent.
A general concept may have many individual instances; an in-

stance of the concept of a group is, of course, just a particular group: a
set G of elements, equipped with functions interpreting the operations
of multiplication and inverse, and satisfying the group equations. A
logician would call such an instance a model of the theory of groups,
but we shall avoid this over-worked term and refer to it instead as a
realization of the theory of groups. A realization of a theory T in any
category C is essentially the same thing as a functor Syn(T )→ C that
preserves the relevant structure of the theory—in the case of groups,
the finite products X × X. (This is in fact the defining universal
property of the syntactic category Syn(T ).) The realizations in the
category SET, consisting of all sets and functions, are thus exactly
what we called the instances of the general concept of a group, namely
groups.

The standard category GROUP of all groups and their homo-
morphisms, as usually defined in abstract algebra, is then essentially
the same as the category of all such instances, that is, the category
REAL(Syn(TGroup),SET) of all SET realizations, i.e. (structure-
preserving) functors, where the morphisms are just natural transfor-
mations of such functors (that these correspond exactly to group
homomorphisms is not trivial). In this way, for any general concept
Syn(T ) corresponding to a theory T we can define the category of its
SET realizations,

REAL(T ) =df REAL(Syn(T ),SET),

7 For example there is an axiomatization of groups using a single ternary operation in
place of the two operations x ∗ y and x−1.
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which may be viewed as the category of instances of the concept
Syn(T ).

Now an amazing and mathematically deep fact emerges, which
can only be seen using the tools of categorical logic: from the category
REAL(T ) of all instances of the concept presented by T , one can ac-
tually recover the general concept Syn(T ). Indeed, for any structured
category R of the same kind as REAL(T ) (we will say a bit more
about the condition “of the same kind” below), one can consider all
of the continuous functors f : R → SET; these may be regarded as
“images” or “abstractions” of the (generalized) realizations in R. The
category of all such abstractions ABSTRACT(R,SET) (again, with
natural transformations as morphisms) may be called the abstract of
R, and written simply

ABSTRACT(R) =df ABSTRACT(R,SET).

A similar construction that the reader may know is the ring C(X) =

C(X,R) of continuous, real-valued functions on a space X . The note-
worthy fact that we mentioned above is this: if for R we take a
category REAL(T ) of realizations of a theory T , then the abstract of
REAL(T ), consisting of all “abstractions” REAL(T ) → SET, will
be the associated concept Syn(T ).8 Thus the abstraction of the real-
izations of a concept is the concept itself. We can even summarize this
briefly by saying that All concepts are abstract, since every concept
is the abstraction of its realizations. More generally, for any suitable
category R, the category ABSTRACT(R) of all continuous functors
f : R → SET (the “abstractions” ofR) is a general concept, of which
R is either the category of realizations, or an approximation thereof.

8 Under suitable assumptions, and up to the relevant notion of equivalence, of course;
see (Awodey, 2021) for the general theory.
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The general correspondence is given by a (contravariant!) adjunc-
tion between the functors of Realization and Abstraction which relate
these operations; schematically,

CONCEPTS

Realization

%%

INSTANCESop

Abstraction

dd

Here CONCEPTS is the category consisting of all “conceptual”
categories Syn(T ) and their (relative) “realizations”, i.e. functors
Syn(T ) → Syn(T ′), and the functor of Realization is defined by
taking realizations in SET,

Realization(Syn(T )) = REAL(Syn(T ),SET),

which we also called the category of “instances” of the concept.
And INSTANCES is the category consisting of all (generalizaed)

categories of instances R (such as the categories GROUP, RING,
etc.) with their “continuous” functors R → R′, and the functor of
Abstraction is defined by taking continuous functors into SET,

Abstraction(R) = ABSTRACT(R,SET),

which we called “abstractions” of the category R.
Let us consider a simple example! Propositional logic consists

of basic propositional variables x, y, z, . . . and constants ⊤,⊥, which
can be made into formulae using the usual propositional connectives
¬z , x ∧ y , x ∨ y , x⇒ z, and which are assumed to satisfy the usual
logical laws, such as x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) , ¬¬x = x, etc.
A theory T in this simplified case is just a set of propositional letters
V = {p1, p2, . . . , pn} (regarded as 0-ary relation symbols), and a list
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of propositional formulae A = {α1, α2, . . . , αm} built up from these
letters, as the axioms of the theory. There are no types, typed variables,
or function symbols (or rather, there is a single, implicit type 1), and
the logical symbols are just the propositional connectives.

The syntactic category Syn(T ), representing the “concept”, is
then the Boolean algebra F (V )/A obtained as the free Boolean alge-
bra F (V ) on the variables V as generators, quotiented by the filter
generated by the axioms A. This “concept” associated to the propo-
sitional theory T = (V,A) is independent of the particular syntactic
presentation (V,A). A realization of T is then a boolean homomor-
phism F (V )/A→ 2, where 2 = {0, 1} is the Boolean algebra of truth
values. Thus such a realization is just a truth-value assignment to the
variables in V , in such a way that the “conditions” in A are all satis-
fied, i.e. the elements a ∈ A are all taken to the value “true” (in other
words, a “model” of the propositional theory T ). For instance, if the
theory T is V = {x, y} and A = {x ∨ y,¬(x ∧ y)}, then a realization
would be an assignment of x to an actual sentence p, and y to one
q, such that only one of p and q is true (or more formally, a direct
assignement of such truth values, by-passing the actual sentences).
Under our description above, such a realization is an instance of the
general concept F (V )/A.

Now, such realizations are exactly the points of the Stone space
Stone(F (V )/A), the topological space associated to the Boolean al-
gebra F (V )/A under the celebrated Stone duality theorem (John-
stone, 1982)—which is in fact the “propositional logic” case of
the categorical logical duality that we are considering here. For-
mally, the points of Stone(F (V )/A) are prime filters in F (V )/A,
and the topology has basic open sets determined by the elements
of F (V )/A. The Boolean algebra F (V )/A can be recovered from
this space Stone(F (V )/A) as the algebra of continuous functions
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Stone(F (V )/A) → 2 into the discrete space 2, with the pointwise
Boolean operations. These abstractions of Stone(F (V )/A) form a
Boolean algebra Bool(Stone(F (V )/A)) which, by Stone duality, is
isomorphic to F (V )/A,

Bool(Stone(F (V )/A)) ∼= F (V )/A .

Indeed, for any (not necessarily Stone) space X, we can form the
Boolean algebra Bool(X) of continuous functions X → 2, and the
original space X will then map canonically to Stone(Bool(X)), giv-
ing the “best approximation” of X by a Stone space.

In the general case, in categorical logic we consider many other
fragments of logic—propositional, equational, coherent, first-order—
and for each such subsystem there is an associated Realization–
Abstraction adjunction between theories, and the concepts they rep-
resent, on the one hand, and their realizations by instances of these
concepts, on the other. The propositional theories just considered
give rise to Stone duality (Johnstone, 1982); equational theories (like
groups) give rise to Lawvere duality (Adámek, Lawvere and Rosický,
2003); coherent and first-order logic are treated by analogous duality
theories developed by Makkai and others (Makkai, 1987; Awodey
and Forssell, 2013). In each diffferent case, the associated notion of
structured category, structure-preserving functor, continuous functor,
etc., is suitably adapted to the respective situation. Many of these
logical dualities are discussed from the standpoint of categorical logic
in the paper (Awodey, 2021).



The homunculus brain and categorical logic 273

6. Categories BRAIN andMIND

So far everything that has been said has merely been a reminder of
standard and well-known things. From now on, everything will be hy-
pothetical and highly simplified. The bold and maximally simplified
hypothesis is that neurons in the brain can be modeled as categories,
the internal logic of which is sufficiently complex (yet manageable).
Of course, our inspiring motive is the human brain, and in construct-
ing our model we shall try to imitate what is going in it; however,
being conscious of our simplified and highly idealized assumptions,
we prefer to speak about a homunculus brain. Our homunculus is
a kind of “mathematical robot”, the aim of which is to provide us
with the opportunity to study how such a simple brain-like structure
could “create meanings” out of its purely syntactic program. Our other
drastically simplifying assumption consists in systematically ignoring
all of the brain’s functions and processes that are not directly related
to the proposed syntax–semantics relationship.

As it is well-known, neurons communicate through signals trans-
mitted via: presynaptic (source) neuron – axon – synapse – dendrite
– postsynaptic (target) neuron, and this via is unidirectional. In our
homunculus model, these transmission processes will be regarded as
functors between categories (neurons).

Let us consider the category CATEGORIES, which we now aptly
call BRAIN. Its objects are categories modeling neurons, and mor-
phisms are functors between these categories.

We thus assume that each neuron in the homunculus brain is
represented by a category (belonging to a certain class of categories;
in the following we shall simply say that a neuron is a category).
At the moment, we are not interested which biological mechanisms
implement this assumption. Everything that counts in this model is
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the assumption that neurons consist of collections of objects and
morphisms satisfying conditions from the category definition. We
should have in mind that these simple conditions might lead to highly
complicated structures.

Morphisms (arrows) in the category CATEGORIES are functors
between object-categories, that is to say axons through which neurons
communicate with each other. The crucial thing is that they must
satisfy the usual conditions for morphisms: composition of morphisms,
its associativity, the existence of identity morphisms. With the latter
there is no problem: no output from a neuron counts as its identity
morphism. To check whether two other conditions are verified in the
human brain would require going deeper into the neural structure of
our brain. In the case of the homunculus brain, this is not necessary.
Since the homunculus is of our construction, we simply assume that
synapses in its brain well-compose and do so in the associative way.

The next step seems obvious. Each neuron (modeled as a category
C ∈ BRAIN) has its own program enabling its working, i.e. an internal
logic underlying this program. We thus can define a counterpart of
Lang(C) which is a “theory” of this neuron. It is reasonable to claim
that it is an object of the category THEORIES which we now call
MIND, and the functor Lang: BRAIN→MIND is defined in analogy
to that between CATEGORIES and THEORIES.

What about the morphisms between such objects? We proceed
in strict analogy with what has been done in THEORIES. Let now
T1 and T2 be objects in MIND, a morphism between them, T1,→
T2, is a functor between their corresponding syntactic theories, i.e.
Syn(T1) → Syn(T2), where the functor Syn: MIND → BRAIN is
defined in analogy to that between THEORIES and CATEGORIES.

The analogy is only apparently straightforward. In fact, it is based
on a huge extrapolation, and as such highly hypothetical, but it is
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worth exploring it since the problem at stake deserves even a higher
risk. By pursuing this analogy we could claim that also in this case
the functors Lang and Syn are adjoint functors. If so, we have a very
interesting conjunction between brain and mind; it is interesting even
if brain and mind are modeled by such a naive construction.

Neurons, their interactions and programs underlying their work-
ing are, in contrast with abstract categories like CATEGORIES and
THEORIES, real things, at least in the homunculus world, and we are
entitled to suppose that the functors Lang and Syn between Brain and
Mind really do what they formally signify (like our phase portrait on
the computer screen really did what the program told it to do).

Roughly speaking the functor Lang provides a collection of the-
ories (mind) for a collection of neurons (brain), and the functor Syn
transfers the syntax of these theories to the network of neurons. The
action of these two functors is adjoint; consequently it determines a
strict interaction between BRAIN and MIND. Let C be any object
(a neuron) in BRAIN and T any object (the theory of this neuron) in
MIND, then equation (1) assumes the form

(2) MIND(Lang(C), T ) ∼= BRAIN(C,Syn(T )).

The natural isomorphism ∼= appearing in this equation is crucial. It
states that when we go from neuron to neuron as objects in BRAIN,
and their corresponding theories vary in THEORIES, then the isomor-
phism between morphisms Lang(C)→ T in MIND and C → Syn(T )

in BRAIN varies in a way that is compatible with the composition of
morphisms in BRAIN and MIND, correspondingly, and with the ac-
tions of the functors Lang and Syn (see Awodey and Forssell, 2013; Le-
inster, 2014).9 Finally, the “higher” cognitive functions of abstraction

9 For a full discussion of the role of the naturality condition in the definition of adjoint
functors see any textbook on category theory.
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and realization of concepts are modelled by a corresponding adjunc-
tion between the associated functors Abstraction and Realization

relating these categories BRAIN and MIND. We could summarise
the situation by saying that the categories BRAIN and MIND interact
with each other with their entire structures and, at the same time, these
very structures are shaped by this interaction.

7. A Comment

The interactions between syntax and semantics are omnipresent both
in our everyday conversations and in various forms of practicing
science. The world around us is full of meanings and our attempts to
decipher them. Science could be regarded as a machine to produce
signs, through experimentation and critical reasoning, and extracting
from combinations of them information about the structure of the
world. Logicians put a lot of effort to make the syntax–semantics
interaction precise. As we have seen in section 2, despite the fact that
formal languages are lacking any external references, it was possible
to create semantical references for them by cleverly exploiting the
relation between language and its metalanguage. In categorical logic
the situation has improved. Any formal theory T generates via the
functor Syn the category Syn(C) = CT of which it is a theory, i.e. CT
provides a “natural” semantics for T . And vice versa, any (sufficiently
rich) category C ′, via the functor Lang, generates its own theory
Lang(C ′) = T ′

C′ which constitutes the internal logic of C ′. It is
interesting to notice that TCT

does not coincide with T , they are only
Morita equivalent. Here, we shall not go into technical details; it is
enough to say that two Morita equivalent theories could be regarded
as two interpretations of the same theory (Halvorson, 2016).
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The fact that TCT
does not coincide with T is a consequence

of the fact that the functors Lan and Syn are not mutually inverse
functors but constitute a pair of adjoint functors. This in turn implies
that in categorical logic the interaction between syntax and semantics
is skillfully complex, with creative influences coming both ways.

All the above discussed properties of the syntax–semantics inter-
action can be presumed to be preserved if applied to the categories
BRAIN and MIND. There is only one big difference: now “neurons
and their theories” are real things (although in a highly idealised, toy
version in the homunculus world). Nevertheless, the situation is not
so different from the one which we can observe in many empirical
sciences, in which some abstract mathematical structures model some
real processes (always more or less idealised). We should not be sur-
prised that the method of mathematical modeling works when applied
to our cognitive processes, but rather that mathematical structures not
only describe the real world (whether it is our brain or the world of
physics), but that they are also effectively acting in it (like in the little
arrow on the computer screen).
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