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Abstract
I will discuss some aspects of the concept of “point” in quantum
gravity, using mainly the tool of noncommutative geometry. I will
argue that at Planck’s distances the very concept of point may lose its
meaning. I will then show how, using the spectral action and a high
momenta expansion, the connections between points, as probed by
boson propagators, vanish. This discussion follows closely (Kurkov,
Lizzi and Vassilevich, 2014).
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n this contribution we will discuss, from the point of view of a
Iphysicistl, a very classical concept: that of a point. Although the
concept is pervasive in physics and mathematics, as it often happens
with the concept we think we know, its most profound meaning (be-
yond definitions) is far from easy. We encounter points very early
in the study of mathematics. We remember that in our elementary
school book a point was defined as: A geometrical entity without di-

mension. We must confess that, after reading this definition, we were
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none the wiser about what a point is. The main reason could have
been the belief what everyone kowns what points are. They could
produced at will with a biro. Or, better, with a sharper pin, or an even
sharper object. In any case we could envisage a limiting process for
which we could always find something more “pointlike”.

Points are crucial in geometry, and Euclid himself gave a defi-
nition of them: "That which has no part”. This is not always true,
often we just find expedient to ignore possible internal structures and
talk of points, indeed it may be that there are “points” which have
a rich structure, which we ignore for the problem at hand. In astro-
physics, for example, a point may be a galaxy, or even a cluster of
galaxies. In general relativity the set of point is usually the set of
possible localised events. This certainly implies some structure. In
classical “point particle” dynamics we use points of phase space to
describe the state of motion of a particle, which we imagine pointlike.
What we have in mind when we talk of points, or pointlike particles,
is always the limiting process alluded before. There may be reasons,
such as technological limitations or convenience, to consider point-
like something which is not, but at the end of the limiting process,
operationally, at the bottom there are points.

It is well known that for particle phase space (the space of po-
sitions and momenta/velocities) this vision becomes untenable when
one considers quantum mechanics. It is impossible to know at the
same time position of momentum of a particle. This is the content of

Heisenberg uncertainty principle (Heisenberg, 1927):
h
ApAq > 3. (M

For quantum phase space we have a well formed, successful theory,
which is supported by a large body of experimental evidence, which

we call Quantum Mechanics. Although it may be formulated in sev-
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eral ways, by far the most useful, and rigorous, one is to consider all
observables, and in particular position and momentum, to be part of
the algebra of operators. The notion of point, and with it that of trajec-
tory, is not present anymore in the theory. Every manual of quantum
mechanics at some stage attempts a connection with classical physics,
see for example (Messiah, 1961, Sect. I11.4). But the notion of point
of phase space is just an ill defined quantity in quantum mechanics.
The closest we may get to it is the possibility to have a coherent
state. Independently on the formal group theoretical definition (see
for example Perelomov, 1986), for our purposes it suffices the prop-
erty that they are maximally localised states, which will saturate the
Heisenberg uncertainty bound (1) with the equality. A central role is
played by the presence of a dimensional quantity (Planck’s constant
k) which acts as cutoff on phase space, thus avoiding the “ultraviolet
catastrophe".

Phase space has become a noncommutative geometry, still it is
possible to study the geometrical properties of such spaces, and this
work has been pioneered by Alain Connes (1994). The idea is to
rewrite ordinary geometry in algebraic terms, for example substitut-
ing the category of topological spaces with that of C'*-algebras. A
physicists would say that spaces are probed by the fields built on it.
For commutative spaces points are pure states, i.e. normalised linear
maps from the algebra to complex numbers, which have to satisfy
certain properties. Once everything is rendered in an algebraic way,
it is then possible to generalise to the noncommutative settings. The
points of classical phase space, described by the commutative algebra
generated by ¢ and p, were described by pure states, in the quantum
setting the algebra is noncommutative, and the pure states are the

wave functions.
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In quantum mechanics however configuration space remains
“classical”, and if one is willing to renounce to the information about
momentum, positions remain the same as in classical mechanics. We
will not dwell further on quantum phase space, in the rest of this
talk we will be concerned with ordinary (configuration) space, and
spacetime. The possibility to consider quantum properties of space-
time goes back to Heisenberg himself, who was worried about the
infinities of quantum field theory, seen as a new ultraviolet catastro-
phe, which at the time were considered a big problem. He wrote this
in a letter to Peierls, the latter told it to Pauli (who mentions it in
his correspondence (Pauli, 1985)). Some years afterwards, indepen-
dently, Bronstein in (1936) noticed that in a theory containing both
quantum mechanics and gravity, the presence of a quantity with the
dimension of a length, Planck’s length, would create problems, in
principle not very different from the ones of quantum mechanics. If
we include gravity in the game things change. We now have a length

scale obtained combining the speed of light, Planck’s constant and

0=/ g ~ 10"%3cm. 2
c

There was no follow-up of these ideas at the time, probably also be-

Newton’s constant:

cause Bronstein was arrested not much after writing the paper by
Stalin’s police, and executed immediately. The phenomenon was pre-
sented more recently, and independently, in a very terse way by Do-
plicher, Fredenhagen and Roberts in (1995).

We will present a caricature of these arguments, which hopefully
captures the main idea in a nontechnical way. It is a variant of the
Heisenberg microscope justification of the uncertainty principle. The
former goes as follows: in order to “see” something small, of size

of the order of Ag, we have to send a “small” photon, that is a pho-
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ton with a small wavelength A, but a small wavelength means a large
momentum p = h/A. In the collision there will be a transfer of mo-
mentum, so that we can capture the photon. The amount of momen-
tum transferred is uncertain. The calculations can be done in a more

formal way, using the resolving power of an ideal microscope to:
ApAg = h 3)

where h = 2xh is the original Planck’s constant. The argument is
very heuristic, and the result is indeed off by an order of magnitude
(47). We know that in order to obtain the uncertainty principle it is
necessary to have a solid theory, quantum mechanics, where p and ¢
become operators, and then it is possible to prove rigorously (1).

We are interested only in space, and not momentum, for which
there is no limitation in quantum mechanics to an arbitrary precise
measurement of . We also change our notation to remark the differ-
ence with the previous discussion. In order to “measure” the position
of an object, and hence the “point” in space, one has to use a very
small probe, which has to be very energetic, but on the other side
general relativity tells us that if too much energy is concentrated in
a small region a black hole is formed. In (Doplicher, Fredenhagen

and Roberts, 1995) the following relations were obtained

Amo(Aml + Azs + Azxz) > 0
Al‘lAIQ + AIQAmg + Axlezg > 52 (4)

For a rigorous statement we would need a full theory of quantum
gravity. A theory which do not (hopefully yet) have fully developed.

For geometry we need more than points, we need to know
how to relate them, we need topology, metric, correlation among
fields. .. Several mathematical results of Gelfand and Naimark estab-

lish a duality between (ordinary) Hausdorft topological spaces, and
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C*-algebras (for a quick review see Aschieri et al., 2009, Chapt. 6
and references therein). The C'*-algebra provides not only a set of
points, but that one may also infer topology, i.e. when a sequence
of points converges to another point. If commutative algebras de-
scribe ordinary spaces, then noncommutative algebras will describe
“pointless” noncommutative spaces. This is the foundational princi-
ple of Noncommutative Geometry. Even if we accept the idea that
space is noncommutative, we must require that in analogy with phase
space, ordinary space must be recovered when some parameter, ¢
in this case, goes to zero. This led to the introduction of deformed
algebra (Gerstenhaber, 1964) and *-products (Bayen et al., 1978).
Of those the most famous one is the Gronewold-Moyal one (Groe-
newold, 1946; Moyal, 1949), which was also introduced in string
theory (Frohlich and Gawedzki, 1993; Landi, Lizzi and Szabo, 1999;
Seiberg and Witten, 1999).

In a deformed *-product, be it the original Groenewold-Moyal or
one of its variations (Galluccio, Lizzi and Vitale, 2009; 2008; Tanasa
and Vitale, 2010) it is still possible to define ordinary, point depen-
dent functions, but the product is deformed. This has led to an inter-
esting philosophical discussion as to the “reality” of points in such
noncommutative geometries. We refer to the work of Huggett (2018)
and its references, but we will move to considerations which involve
the most advanced theory which encompasses relativity and quantum
mechanics, quantum field theory (Weinberg, 1995), to infer what the
relations among points are at very high energy. In particular we will
use the knowledge from field theory at energies below the (yet to be
defined) transition scale at which quantum geometry appears, to in-
fer some knowledge of quantum spacetime. We envisage some sort of
phase transition relating classical and quantum spaces, although this

view is not necessary for the considerations we make below. We will
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be very much inspired by noncommutative geometry, and we will
be in a definite context, that of spectral geometry, and especially the
spectral action, but the reasoning we will make can be more general.
A connection between spectral geometry and the x-product is given
by the fact that there is basis in which these products are represented
by matrices (Lizzi, Vitale and Zampini, 2006).

The way one can learn what happens beyond the scale of an ex-
periment is to use the renormalization flow of the theory. We know
that the coupling constants, i.e. the strength of the interaction, change
with energy in a way which depends on the interacting fields and the
(fermionic) particles present in the spectrum. This flow can be cal-
culated perturbatively using data gathered at attainable energies, and
then extrapolated at higher energies. The extrapolation will of course
be valid only if no other, presently unknown, particles and interac-
tions appear. Conventionally it is said that the calculation is valid
“in the absence of new physics”. Presently the known running of the
three gauge interactions (strong, weak and electromagnetic) is pre-
sented in the figure. Gravitational interaction is not included since
it does not give rise to a renormalizable interaction (and hence the
need for quantum gravity!) The boundary values at low energy are es-
tablished experimentally, and the renormalization flow show that the
nonabelian interactions proceed towards asymptotic freedom, while
the abelian one climbs towards a Landau pole at incredibly high ener-
gies 1053 GeV. The figure also show that the three interaction almost
meet at a single value at a scale around 10'® GeV. The lack of a uni-
fication point was one of the reasons for the falling out of fashion of
GUT’s, but it should be noted that some supersymmetric theory allow
the unification point. It is however unlikely that the quantum field the-
ory survives all the way to infinite energy, or at least to the Landau

pole. We all believe that this running will be stopped by “‘something”
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Figure 1: The running of the coupling constants of the three gauge interac-
tions.

at the Planck energy (mass), which is the energy equivalent of the
Planck’s lenght ¢ of (2):

M, =4/ % ~ 10'? GeV. 5)

This unknown something we call quantum gravity. At this scale there
will certainly be some new physics, because it will be impossible to
ignore gravitational effects.

We take the point of view that in the Planckian energy regime

there is a fundamental change of the degrees of freedom of space-
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time. Like what happens in a phase transition. One useful tool to de-
scribe this is new physics is Noncommutative Spectral Geometry?. In
this framework geometry is algebrized, the topological, metric and
gauge aspects of the theory are encoded in a C*-algebra acting on
the Hilbert space of physical fermions, a generalised Dirac operator
containing the information of the masses (Yukawa couplings) and of
the metric, and chirality and charge conjugation. The model is suc-
cessfully applied to the standard model and it has some predictive
power (Chamseddine, Connes and Marcolli, 2007; Devastato, Lizzi
and Martinetti, 2014b; Chamseddine, Connes and Suijlekom, 2013;
Devastato, Lizzi and Martinetti, 2014a; Aydemir et al., 2016; Sui-
jlekom, 2015).

The metric and geometric properties are encoded in the (general-
ized) Dirac operator D which fixes the background, he action is then
an expansion around this background. Here we must make a “confes-
sion”. The model is Euclidean and it considers a compact space. The
latter is usually considered a minor problem, but the infrared frontier
may have surprises, see for example the recent interest in it in (Stro-
minger, 2017; Asorey et al., 2017; 2018). The issue of a Lorentzian,
or at least causal, version of this noncommutative geometry is under
active investigation, a partial list of references is (Dungen, 2016; Bizi,
Brouder and Besnard, 2018; Franco and Eckstein, 2013; 2014; 2015;
D’ Andrea, Kurkov and Lizzi, 2016; Kurkov and Lizzi, 2018; Devas-
tato, Farnsworth et al., 2018; Bochniak and Sitarz, 2018; Aydemir,
2019).

The eigenvalues of the Dirac operator on a curved spacetime
are diffeomorphism-invariant functions of the geometry. They form

an infinite set of observables for general relativity and are therefore

2 For personal reviews in increasing level of detail see (Lizzi, 2016; 2018; Devastato,
Kurkov and Lizzi, n.d.).
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well suited to investigate the structure of spacetime. The interaction

among fields is described by the Spectral Action:

2
S= Trx <ZX‘§‘> ; (6)

where  is a cutoff function, which we may take to be a decreasing
exponential or a smoothened version of the characteristic function of
the interval, A is a cutoff scale without which the trace would diverge.
D4 = D+ Ais afluctuation of the Dirac operator, A being a connec-
tion one-form built from D as A = ", a;[D, b;] with a;, b; elements
of the algebra, the fluctuations are ultimately the variables, the fields
of the action. the general ideas have a broader scope. The presence
of A causes only a finite number of eigenvalues of D 4 to contribute,
a finite number of modes. Finite mode regularization, based on the
spectrum of the wave operator, was introduced in QCD (Andrianov
and Bonora, 1984a,b; Fujikawa and Suzuki, 2004).

The bosonic spectral action can be seen as a consequence of
the spectral cutoff (Andrianov and Lizzi, 2010; Andrianov, Kurkov
and Lizzi, 2011; Kurkov and Lizzi, 2012), for description of
Weyl anomaly and also phenomena of induced Sakharov Gravity
(Sakharov, 1968) and cosmological inflation (Kurkov and Sakellar-
iadou, 2014). It can also be seen as a zeta function calculated in zero
(Kurkov, Lizzi, Sakellariadou et al., 2015). The zeta-spectral action
opens an intriguing opportunity to give a classically scale invariant
formulation of the spectral action approach, where all the scales are
generated dynamically. Various mechanisms of scale generation were
considered in both gravitational (Sakharov) or scalar fields sectors
(Kurkov, 2016). An enhanced role of the spectrum of the Dirac oper-
ator goes far beyond the scope of spectral action. A simple analysis

of the spectrum of the free Dirac operator allows to arrive to a cor-
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rect relation between three and four dimensional parity anomalies
in gauge (Kurkov and Vassilevich, 2017) and gravitational (Kurkov
and Vassilevich, 2018) sectors.

The spectral action can be expanded in powers of A~! using stan-
dard heat kernel techniques. In this framework it is possible to de-
scribe the action of the standard model. One has to choose as D oper-
ator a tensorial combination of the usual Dirac operator on a curved
background ¥ and a matrix containing the fermionic parameters of
the standard model (Yukawa couplings and mixings), acting on the
product of spinors on spacetime times the fermionic degrees of free-
dom. In this way one “saves” one parameter, and can predict the mass
of the Higgs. The original prediction was 170 GeV, which is not a bad
result considering that the theory is basically based on pure mathe-
matical requirements. When it was found at 125 GeV it was realized
that the model had to be refined (right handed neutrinos play a cen-
tral role) to make it compatible with present experiments. we will not
dwell further on the Higgs issue, and concentrate on the role of the
spectral action for spacetime.

Technically (Vassilevich, 2003) the bosonic spectral action is
a sum of residues and can be expanded in a power series in terms
of A=1 as

Sp =) fnan(D3/A%), )

where the f,, are the momenta of x

fo = / dz zx()
0

/0 " da x(x)

fonpa = (=1)"0;x()

f2

n > 0. ®)
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The a,, are the Seeley-de Witt coeflicients which vanish for n odd.
For D? of the form

D% = —(g"0,0,1+ "9, + B). 9

Defining (in term of a generalized spin connection containing also

the gauge fields)
1 v apTv
G = o 0”7,
QMV = (9le, — 8ywu + [w/uwu]v
E = B—g" (Ouwy +wuwy —T7,w,) (10)
then

At 4
ay = 167r2/dx Vo trlp,

A? 4 R
ay = 6.2 /dx Vg tr (6+E>7

11 4
= — —12VH 2 _ 2R, N
as 1672 360 dz®y/g tr ( ViV, R+ 5R R, R",
+2R,10p R*7P — 60RE + 180>
+60VH*V . E + 309, Q"), (11

tr is the trace over the inner indices of the finite algebra Ap and
2 and FE contain the gauge degrees of freedom including the gauge
stress energy tensors and the Higgs, which is given by the inner fluc-
tuations of D
Let me analyse the role of A. Without it, the trace in (6) would
diverge. Field theory cannot be valid at all scales. It is itself a theory
which emerges from a yet unknown quantum gravity. This points to a
geometry in which the spectrum of operators like Dirac operator are

truncated, i.e. the eigenvalues “saturate” at A, which appears as the
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top scale at which one can use QFT. One may identify this scale with
£, but it might be different (even lower, at the unification scale). Apart
from the spectral action, truncation on a matrix basis is a common
tool in noncommutative geometry (Lizzi and Vitale, 2014).

Consider the eigenvectors |n) of D, in increasing order of the
respective eigenvalue A,,. D = > |n) A, (n|. Define N as the max-

imum value for which A,, < A. This defines the truncated Dirac op-

erator N
D= "|n)An(n|+ > [n)An]. (12)
0 N

We are effectively saturating the operator at a scale A.
Given a space with a Dirac operator one can define a dis-
tance Connes, 1994 between states of the algebra of functions, in

particular points are (pure) states and the distance is:

d(z,y) = sup [f(z)— f(y)l. (13)
I[D.fllI<1
It is possible to prove (D’ Andrea, Lizzi and Martinetti, 2014) that us-
ing D the distance among points is infinite. In general for a bounded
Dirac operator of norm A then d(x,y) > A=, and to find states at fi-
nite distance one has to consider “extended” points, such as coherent
states.

We will try to infer, from a field theory which we know works at
“low” energy, the behaviour of it at scales which are beyond a cutoff.
We are of course on dangerous grounds, we are stretching a theory
beyond its natural realm of validity. We are assuming that the scale
of renormalization has a physical meaning, and is not a device to reg-
ularize the infinities of the theory, and we are using an action which,
while is capable to reproduce some features of the standard model, is

not really equipped to quantize gravity. Having done the disclaimer
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let me proceed. We will investigate the spectral action in the limit of
high momenta using an expansion which sums up all derivatives. We
will follow closely our paper with Vassilevich and Kurkov (2014).

Consider the generic fermionic partition function:
Z= / [d)[dyle” WIPIY) =Y et D, (14)

The equality is formal because the expression is divergent, and has to
be regularized, and the natural choice for us is to chose Dj. The con-
siderations are nevertheless more general. One can study the renor-
malization flow, and note that the measure is not invariant under
scale transformation, giving rise to a potential anomaly (Andrianov
and Lizzi, 2010; Andrianov, Kurkov and Lizzi, 2011). The induced
term by the flow, which takes care of the anomaly, turn out to be
exactly the spectral action.

We will make the working hypothesis that A has a physical mean-
ing, it is a scale indicating a phase transition, and we can try to infer
some properties of the phase above A studying the high energy limit
of the action with the cutoff. We will use field theory to do this, and
will find, in the end, that at high momentum Green’s function, the
inverse of D, effectively is the identity in momentum space. More
precisely, we will expand the action around high momenta, rather
than low ones, as is usually done. let us see this in greater detail con-
sidering the bosonic sector.

Usually probes are bosons, hence let us consider the expansion
of the spectral action in the high momentum limit. This has been
made by Barvinsky and Vilkovisky (1990) who were able to sum all

derivatives (for a decreasing exponential cutoff function):
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D? At 4 -2
Tr exp ) = 2 d'zy/gtr [L+ AP+

2 2
AT <R,wc1 (7%) R* 4 Rey <f%> R+

V2 v?2 V2\ .
Pcs (—ﬁ> R+ Pey <_F> P+ Qc5 <—ﬁ> (9L )}

LO(R, 0%, B9) (15)

where P = FE + %R and ¢q,...,cs are known functions, high mo-

menta asymptotic of form factor which can be calculated and are

ale) = e -0,
1 2
c2(§) =~ —E§_1+§§_2+O(§_3);
a6) =~z HSE?10(E),
aaf§) = & A4
al6) = F€-240(e). (16)

Let us first discuss the usual case (no truncation). Consider a
Dirac operator containing just the relevant aspects, i.e. a bosonic
fields and the fluctuations of the metric.

D =iV, + 50 = i (0, + wu +iAL) + 50, (17)

with w,, the Levi-Civita connection and g,, = d,, + hu,. The
field ¢ for the time being is a generic scalar field. When the Dirac
operator becomes the one of the standard model it may be inde-
tified with the Higgs. It is now possible to perform the B-V ex-
pansion to get the expression for the high energy spectral action:
A* 1 1
2

SB ~ W /d4{Z} |:_gh1“’hl“’ —+ 8¢)_762¢ + 8FAU‘UWF#” . (18)
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In order to understand the meaning of this action let us remind how
we obtain the propagation of particles and fields and correlation of
points in usual QFT with action:

el = [ s | ol (02 4 02) o(0) = Sheto)| . 19)

To this correspond the equation of motion
(0% +m?) o(y) = J(y), (20)

and the Green’s function G(x — y) which “propagates” the source:

ps(x) = /d4yJ(y)G($ - ) 2D
In the momentum representation we have:
_ 1 4 ikx A
p(z) = W d°k ™" (k).
1 oo
J(x) = o /d4k ek J(k),
1 ) .
Glz—y) = oy / d*k e* ==Y Q(k), (22)
and the propagator is
1

The field at a point depends on the value of field in nearby points,
and the points “talk” to each other exchanging virtual particles.

In the general case of a generic boson ¢, the Higgs, an interme-
diate vector boson or the graviton and F(9?) the appropriate wave

operator, a generalised Laplacian

sl = [ e (Je@F@)en) - Twew). e
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In this case the equation of motion is

F(0*)¢(z) = J (), (25)
giving
G= 1 . ary=—t_ (26)
F(82) F(=k2)’

and the cutoff is telling us that?

o1(a) = / ()Gl — y) = ﬁ / d‘*ke““ﬂk)ﬁ. @7)

The short distance behaviour is given by the limit £ — co.
Consider J(k) # 0 for |k?| € [K?, K? + 0k?], with K? very
large. Then the propagated field becomes:

(27r)4 [ d*ke*e J(k)k* = (—9%)J(x) for scalars

() F and vectors,
~ (27r)4 Jd* ke J(k) = J(x) for gravitons.
(28)

This corresponds to a limit of the Green’s function in position space

(—0%)6 (x —y) for scalars and vectors,

Gz —y) x { (29)

0 (z—vy) for gravitons.

The correlation vanishes for noncoinciding points, heuristically,
nearby points “do not talk to each other”. This is a limiting behaviour,
we are inferring the behaviour at high energy extrapolating from low
energy expanding around infinity. It is a little like a fish attempting
to know what is beyond the surface of the water! One has to take it

as a general indication that the presence of a physical cutoff scale in

3 Note that with our signature, at low momentum F(—k’2) = k2+m2. There are some
imprecise statements in the original paper (Kurkov, Lizzi and Vassilevich, 2014).
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momenta leads to a “non geometric phase” in which the concept of
point ceases to have meaning, possibly described by a noncommuta-
tive geometry.

Note that throughout this discussion spacetime has been left un-
altered. We just imposed the cutoff and used standard techniques and
interpretations. Hence we did not touch upon points in this discus-
sion. Points might still be there, but they are uncorrelated at very
high energy. Somehow their meaning is lost, since they are not op-
eratively correlated. In our opinion this indicates a phase transition
for which the locality order parameter (position) is not present any-
more. But it also gives us the indication that quantum gravity must be
a theory in which points are not the relevant entity. This is consistent
with several other work, which in different contexts, and using dif-
ferent techniques, find similar phenomena. For example asymptotic
silence whereby, near gravitational singularities, light cones collapse
into lines, so that again nearby points cannot communicate, or “hear
each other”. This is but an extreme version of dimensional reduction,
a recent good review is (Carlip, 2019). Also the concept of event be-
comes debatable in versions of xk-Minkoski, giving rise to the concept
of relative locality (Amelino-Camelia et al., 2011) and the fact that
localization is observer dependent (Lizzi, Manfredonia et al., 2019).

According to the interpretation given in this review we are like
the deep water fish trying to understand what goes on above his ceil-
ing. He knows that pressure decreases as he goes up. He can also
infer some properties of a different states of matter by looking at
bubbles which are creates near some “high energy” volcanic vents or
when “above” there are storms, but he cannot naturally grasp the con-
cept of air, or absence of water. He will need a higher leap: quantum

gravity. The hope is that this kind of considerations might help.
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