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Abstract
Recently the cosmological evolution of the universe has been con-
sidered where 3-dimensional spatial topology undergone drastic
changes. The process can explain, among others, the observed small-
ness of the neutrino masses and the speed of inflation. However,
the entire evolution is perfectly smooth from 4-dimensional point of
view. Thus the raison d’être for such topology changes is the exis-
tence of certain non-standard 4-smoothness on R4 already at very
early stages of the universe. We show that the existence of such
smoothness can be understood as a byproduct of the quantumness
of the origins of the universe. Our analysis is based on certain formal
aspects of the quantum mechanical lattice of projections of infinite
dimensional Hilbert spaces where formalization reaches the level of
models of axiomatic set theory.
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1. Introduction

There exist many free parameters of physics which can be de-
termined experimentally though fundamental theoretic deriva-

tion of them is still missing. Moreover, knowing such derivation pre-
sumably will lead to the fundamental revolution in physics which
would rely both on the extension of the standard model of particles
(e.g. Weinberg, 2018) and understanding gravity at quantum regime
through cosmological data (e.g. Woodard, 2014). Among the param-
eters in question there are masses of elementary particles, mixing an-
gles, coupling constants and in cosmology the value of the cosmologi-
cal constant, the speed of inflation or the α parameter in the Starobin-
sky model. For example we have experimental bounds on the neu-
trinos masses from PLANCK, Baryon Acoustic Oscillations (BAO)
and KamLAND-Zen (Majorana neutrino) experiments (Gando et al.,
2016; Planck Collaboration et al., 2016; Harnois-Déraps et al., 2015).
The smallest experimental bound for the sum of the three neutrino
masses reads ∑

i

mνi ≤ 0, 12eV .

A way how these bounds were obtained indicate strongly that suc-
cessful predicting true values for the masses should deal with cos-
mology. That is why the following question is in order.

Q1: Do we know any candidate for the model of cosmologi-
cal evolution which would help determining theoretically the
realistic (bound for) neutrino masses?

We do know the seesaw mechanism of generating small neutrino
masses, however, the derivation deals with two energy scales as free
parameters which are not, however, fundamentally fixed. The Q1 has
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been answered in the affirmative in the series of papers (Asselmeyer-
Maluga and Król, 2018; 2014; 2019) where a suitable cosmological
model has been constructed. Hence the immediate additional prob-
lem emerges:

Q2: Does the model of Q1 predicts realistic values of some
inflationary parameters, like a speed of inflation?

The affirmative answer for Q2 has been indeed given recently.
The model is based on a smooth differential structure on R4 which
is not standard, i.e. is not any smooth product R × R3. We call such
a structure an exotic smooth structure and R4 with it an exotic R4.
There is a continuum of such different, pairwise nondiffeomorphic,
exotic R4’s. Thus mathematics favours dimension 4 in this respect,
i.e. any other Rn for any n ̸= 4 carries unique standard smooth struc-
ture. The physics of the proposed cosmological model distinguishes
one of the structures, namely the one which embeds in, also exotic,
K3 surface, i.e.

R4 ↪→ K3⊕ CP
2
.

Q3: K3 is compact. Does it have any physical, probably cos-
mological, meaning which would extend the embedded non-
compact R4 representing spacetime?

After presenting some details of the model we will present certain
speculative ideas regarding this issue.

In the second part of the paper we will deal with quantum origins
of the smoothness required by the model. Provided, the initial state
of the Universe is quantum mechanical, i.e. formulated as usual by a
Hilbert space of states, we will analyze the following problem:

Q4: Does the QM formalism know that the universe at large
scales is smooth, 4-dimensional and exotic?
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Similar question has been recently addressed in (Król,
Asselmeyer-Maluga et al., 2017; Król, Klimasara et al., 2017). More
thorough analysis will be given elsewhere. We show that the smooth-
ness on R4, which agrees with QM formalism, has to be exotic. This
result strongly supports the proposed model. Questions Q1 and Q2
along with the details of the model will be presented in the next sec-
tion. The results and arguments concerning Q4 will appear in the
subsequent section. We close the paper with the discussion which
covers also Q3.

2. The smooth cosmological model for inflation
and neutrino masses

The Friedman-Robertson-Walker (FRW) model has proven to be very
successful in modelling a homogeneous and isotropic universe. The
time-like slices define 3-geometries which, in the case of the closed
universe, are 3-spheres S3 (k = +1) giving rise to the model based on
S3 × R. Since 1979 seminal work by M. H. Freedman (1979) math-
ematicians have become aware of the existence and basic construc-
tions of smooth manifolds which all are topologically S3 × R, how-
ever, smoothly they are not diffeomorphic neither to each other nor to
S3 ×R. Soon after in 1980s mathematicians again found that similar
open 4-manifolds exist also for R4—exotic R4’s. They all are home-
omorphic to R4 being pairwise nondiffeomorphic. Moreover, there
is a continuum of mutually nondiffeomorphic classes of exotic open
4-manifolds each being homeomorphic with a given open 4-manifold
(see e.g. Gompf and Stipsicz, 1999). This and the existence of exotic
R4 make the dimension 4 completely distinguished in mathematics
unlike the other dimensions where the usual tools of differential ge-
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ometry and topology work well. Many new techniques have been
found and developed within the recent years to understand and ex-
plore the phenomenon of exotic 4-smoothness. Among which Casson
handles, Akbuluth corks, tools of hyperbolic geometry, handle calcu-
lus and many others have become an everyday toolkit of researchers
in the field. We do not know any way how to avoid these construc-
tions and replace them by known techniques from other dimensions.
That is why it is not a surprise that the variety of methods are be-
ing applied in order to recognize physical applications of 4-exotic
smooth structures. Two aspects are particularly promising—the di-
mension 4 is also distinguished by physics and several parameters in
cosmology and particle physics call for their fundamental derivation
and explanation.

On the way of searching for such an explanation we have recently
proposed the cosmological model based on exotic S3×R, i.e. S3×Θ

R (Asselmeyer-Maluga and Król, 2018; 2014; 2019). Such smooth
open 4-manifolds (a continuum of them) can be seen as submanifolds
(exotic ends) of exotic R4’s

S3 ×Θ R ⊂ R4 .

Here Θ refers to certain homology 3-sphere smoothly embedded in
exotic S3 ×Θ R and allows for distinguishing between these exotic
smooth manifolds. When Θ = S3 the product is globally smooth and
the 4-manifold becomes the unique standard smooth S3 × R. So the
base for the cosmological model is to refer to these exotic smooth
S3 ×Θ R rather than to the standard smooth S3 ×R.

Exotic S3 ×Θ R is a smooth 4-manifold, so the cos-
mic evolution seen from dimension 4 can be considered
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perfectly smooth. However, the 3-dimensional slices un-
dergoes drastic topology changes

S3 1.→ Σ(2, 5, 7)
2.→ P#P , (1)

which will determine the values of certain physical pa-
rameters like neutrino masses.

The 3-dimensional evolution within the standard
S3 ×R is trivially S3 → S3 → S3.

Here Σ(2, 5, 7) is the Brieskorn homology 3-sphere and P#P is the
connected sum of two copies of the Poincaré 3-sphere (Asselmeyer-
Maluga and Król, 2018; 2019). To pinpoint physics into the model we
are taking the radius of S3 in (1) to be of order of the Planck length
and the natural energy of that epoch to be Planck energy. Such a
choice is natural since the evolution of the universe should start with
the quantum Planck era. The topology change 1. is the 4-dimensional
cobordism W (S3,Σ(2, 5, 7)) between 3-sphere and the Brieskorn
sphere. To make it smooth we need to glue a Casson handle. A
Casson handle (Ch) is the infinite geometric construction which be-
comes the main player in investigating of 4-exotic smoothness. As
shown by Freedman every Ch is topologically the ordinary 2-handle,
D2 × R2, with the attaching region S1 × R2 while smoothly there
are infinitely many of different exotic Ch’s (e.g. Gompf and Stipsicz,
1999). The infinite geometric construction present within any Ch is
naturally grouped into the layers indexed by n ∈ N and each layer
corresponds to the level of a labeled tree defining Ch. Each level n
contributes topologically to the change of the length scale by the ex-
pression ∼ θn

n! . θ is the function of purely topological invariant of the
3-manifold Σ(2, 5, 7), i.e. θ = 3

2·CS(Σ(2,5,7)) where in the denomina-
tor stands Chern-Simons invariant of the Brieskorn homology sphere.
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The contribution of the entire infinite Casson handle is thus given by
(Asselmeyer-Maluga and Król, 2018; 2014; 2019)

a = a0

∞∑
n=0

θn

n!
. (2)

To determine the energy scale of the first topology change in (1)
relies on finding the minimal segment of Ch which has to be de-
velop in order to make the cobordism W (S3,Σ(2, 5, 7)) smooth in
S3 ×Θ R ⊂ R4. As argued in (Asselmeyer-Maluga and Król, 2014;
2019) on the base of Freedman result there are needed 3-stages of Ch:
Every Ch is embeddable in its first 3-stages. Thus the shortest possi-
ble time change, coordinatized by the levels n, reads (Asselmeyer-
Maluga and Król, 2014; 2019)

∆t =
(
1 + θ +

θ2

2
+
θ3

6

)
· tPlanck

which is the shortest change lowering the Planck energy. This gives
rise to the first, below Planck, energy scale

EGUT =
EPlanck

1 + θ + θ2

2 + θ3

6

.

Calculating θ as a function of Chern-Simons invariant, θ = 140
3 , gives

rise to the GUT scale, i.e. EGUT ≃ 0, 67 · 1015 GeV. But this time
it is a purely topologically determined energy scale (up to the initial
Planck energy).

Let us turn to the second topology transition in (1), i.e.
Σ(2, 5, 7) → P#P . To make it smooth we need to glue in three
Ch’s. This is due to the topological decomposition of the boundary
of E8⊕E8 as K3 surface E(2) (Asselmeyer-Maluga and Król, 2018;
2019). Thus the second topology change follows from the embedding
of exotic R4 into E(2)#CP 2. Taking into account the entire infinite
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stages of these Ch’s, and relating the result to the initial Planck en-
ergy, gives rise to the result

E2 =
EPlanck · exp

(
− 1

2·CS(P#P )

)
1 + θ + θ2

2 + θ3

6

.

This energy E2 ≃ 63GeV is of the order of the electroweak energy
scale (or the half of the Higgs mass). Again, the result is supported
topologically and the exotic smoothness of R4 is the main reason for
this support.

Given the two topological energy scales we are using them to
evaluate the neutrino masses. Applying the simplest seesaw mecha-
nism we are taking the mass matrix(

0 M

M B

)

with energy scales M ∼ EGUT ≃ 0, 67 · 1015 GeV and B ∼ E2 ≃
63GeV introduced. Then the mechanism relies on calculating the
eigenvalues which read

λ1 ≈ B λ2 ≈ −M
2

B
,

thus the neutrino mass is predicted as

m = λ2 ≃ 0, 006 eV.

The value agrees with the current experimental upper-bounds (e.g.
Planck Collaboration et al., 2016; Harnois-Déraps et al., 2015). It
is, however, the value protected by the topology of the unverse which
underlies certain nonstandard (exotic) smooth differentiable structure
of R4.
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It is quite interesting that the formula (2) allows for determining
the e-folds number N for the inflation in such a topological model
(Asselmeyer-Maluga and Król, 2014; 2019). Namely

N =
3

2 · CS(Σ(2, 5, 7))
+ ln 8π2 ≃ 51

which is experimentally acceptable and, as the model explains, it is
again topologically supported value.

3. Very early universe and the evolution of the
models of ZFC

We have seen that the replacement of the standard smooth structure
by the exotic one S3×R has tremendous impact on understanding of
the cosmological evolution of the universe and leads to determining
neutrino masses along with GUT and electroweak energy scales. All
this relies upon the initial conditions settled as quantum Planck en-
ergy scale and the Planck length radius of S3 so that the question Q4
from the Introduction can be addressed. Namely, does QM formal-
ism determine the large scale smoothness of the evolving universe?
Is this smoothness in dimension 4 indeed exotic or rather standard?
If the answers indeed support an exotic geometry that would be a
strong indication in favour of the entire model. The key tool to attack
this problem is formalization: one goes back to a formal level where
set theoretic constructions of QM and differential geometry become
important. Especially instead of working in undetermined formally
universal space one starts working in specific models of Zermelo-
Fränkel set theory with the axiom of choice (ZFC). The models can
vary along the evolution of the universe and their relations serve as
additional physical degrees of freedom.
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Let H be an infinite dimensional separable complex Hilbert
space representing states of the quantum world at the Planck era. Infi-
nite dimensionality is enforced by the need to refer to spacetime with
momentum and position operators. Then let {L,∧,∨,¬,0,1} be the
lattice of projections of H. Local Boolean frames of the lattice are
given by maximal complete Boolean algebras of projections B’s. If
dimH = ∞ then each such B is, in general, decomposed into the
atomic, Ba, and atomless, Bc, parts (Kappos, 1969)

B = Ba ⊗Bc . (3)

Bc is the atomless measure Boolean algebra, i.e.Bc ≃ Bor([0, 1])/N
where Bor([0, 1]) is the Borel algebra of subsets of [0, 1] ⊂ R and N
ideal of Lebesgue measure zero subsets of [0, 1]. Bc is homogenous,
i.e. Bc

iso≃ Bc(p) for every p > 0 where Bc(p) is the algebra of all
q ≤ p with the unit p. It follows that Bc is the universal algebra for
all B’s which means that

∀B⊂L B is completely embeddable in Bc .

Thus in what follows we will use a single symbol B for this atom-
less, complete, universal measure algebra, replacing the variety of
B’s in (3).

Let V be a transitive standard universe of set theory and V B

the Boolean-valued class of ZFC (e.g. Jech, 2003). Such a transi-
tive standard model V exists provided ZFC is consistent due to the
Mostowski collapsing theorem (Jech, 2003). The construction of V B

is also well recognized and described in a variety of textbooks (see
e.g. Jech, 2003; Bell, 2005). For us V B is a Boolean-valued model
which gathers together Boolean framesB’s derived from L. Maximal
complete Boolean algebras B’s determine maximal sets of commut-
ing observables of QM based on H by virtue of the spectral theorem.
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Let {Ai, i ∈ I} be a set of commuting observables on H. The max-
imality of such a family is equivalent to the existence of a single
self-adjoint operator A with the spectral measure µσ on S(A)—the
Stone spectrum of the projection algebra B. To every set {Ai, i ∈ I}
as above there exists a Boolean algebra of projections B with the
spectrum S(A). The algebra B generates all observables in the fam-
ily in the sense that the projections being the values of the spec-
tral measures live in B. In the case B of being maximal the family
of observables is also maximal (complete) set of observables. Let
L2(S(A), µσ) be the Hilbert space of square µσ-integrable complex-
valued functions on S(A).
Lemma 1. (Boos, 1996) The following statements are equivalent:

i. There exists a unitary isomorphism U : H → L2(S(A), µσ) such
that

UAU−1(ψ(x)) = xψ(x)

is the self-adjoint position operator Q on L2(S(A), µσ).
ii. A is maximal.

iii. B is complete and maximal.
iv. Every self-adjoint operator C on H commuting with B, fulfills C =

f(A) for some Borel function f : S(A) → R.

We see that there is a strict 1 : 1 correspondence between frames
of complete sets of self-adjoint operators and maximal Boolean al-
gebras B’s. Now let us assign the maximal operator A to every self-
adjoint C on H. Subsequently, there is a maximal complete Boolean
algebra B, which corresponds to A. The important, though obvious,
consequence is the following
Corollary 1. In QM one cannot reduce the resulting family of B’s as above
to the single-element family {B}.



26 Jerzy Król, Torsten Asselmeyer-Maluga

The reason is that there exist noncommuting observables de-
termining different maximal families which correspond to different
maximal complete Boolean measure algebrasB’s. Otherwise the cor-
respondence would not be 1 : 1.

Now let us assign the family of copies of V B’s to B’s according
to the lemma above. Again the assignment is irreducible to a single
model V B even though the models V B’s are isomorphic. Each V B

is a Boolean-valued model of ZFC. To reduce it to a 2-valued model
V {0,1} one should make use of certain homomorphisms

hB : B → {0, 1} .

We want to preserve as much of the structure of B as possible since
these algebras are local frames of QM. Each B is atomless complete
maximal measure algebra. In particular given a subset S ⊂ B there
always exist maximum

∨
S ∈ B. We say that hB preserves complete-

ness of B if for every family S ⊂ B with
∨
S ∈ B (B is complete)

hB(
∨

S) =
∨

{hB(a) : a ∈ S} .

Moreover we want to preserve dense families in B. A subset X ⊂ B

is dense in B when

q ∈ X ∧ p ∈ B ∧ q ≤ p⇒ p ∈ X (4)

∀p ∈ B∃q ∈ X(p ≤ q) . (5)

Particularly important families in B are generic ultrafilters. A subset
X ⊂ B is a filter on B when

q1, q2 ∈ X ⇒ ∃z ∈ X such that q1 ≤ z ∧ q2 ≤ z (6)

q ∈ X ∧ p ∈ B ∧ p ≤ q ⇒ p ∈ X . (7)
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Definition 1. A generic ultrafilter on B is a filter U ⊂ B such that for any
family X ⊂ B dense in B

X ∩ U ≠ ∅ .

Then, the following result hold.
Lemma 2. (Solovay, 1970, p.35) Let hB : B → {0, 1} be a complete homo-
morphism. Then

h−1
B (1) = U

is a generic ultrafilter on B.

Let V be the universe of sets as before and U ⊂ B a generic
ultrafilter on B i.e. U ∩ X ̸= ∅ for every dense subfamily X on B
in V .
Lemma 3. (Jech, 1986, p.7) B is atomless iff U /∈ V .

From Lemmas 2 and 3 it follows
Lemma 4. In V : There does not exist any complete hB : B → {0, 1} for the
measure algebra B.

Proof. B is atomless so there does not exist any generic U in B in V .

One way to overpass this no-go property is to relativize ZFC into
models of ZFC or allow for changing the universe of sets. Let V be
a standard transitive model of ZFC as above. We need two important
conditions imposed on B defined in V . If B is a complete atomless
Boolean algebra in V and P a dense partial order P ⊂ B in V . Then,
following (Solovay, 1970), we assume that:

1. There exist only countably many subsets of P in V .
2. hB : B → {0, 1} is said to be V -complete if for every family

S ⊆ B living in V , i.e. S ∈ V , and
∨
S ∈ V then

hB(
∨

S) =
∨

{hB(s) : s ∈ S}.
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3. A filter U on B is V -generic when U has nonempty intersec-
tion with every dense family in V .

Then one proves
Lemma 5. (Solovay, 1970, p.35) For every V -complete homomorphism hB :

B → {0, 1} the set
U = {x : hB(x) = 1} (8)

is an V -generic filter on B.
Conversely, for any V -generic filter U there exists unique hB fulfilling

(8).

Note that for B atomless still Lemma 3 forbids the existence of
U in V so that

hB /∈ V and U /∈ V .

However, due to the relativization of models of ZFC in models of
ZFC we can now indicate the model V ′ extending the V where there
live both hB and U . This is the random forcing extension of V .
Theorem 1. (Solovay, 1970, p.36) There is a canonical 1:1 correspondence
between the reals random over V and V -complete homomorphisms of B,
hB → {0, 1}.

As we noted before the Boolean-valued models {V B : B ∈ B}
are isomorphic. On the other hand these models cannot be reduced to
a single-element family V B . Given the procedure above reducing B
to {0, 1} we are faced with a family of trivially isomorphic algebras
{0, 1} so that they are distinguished by different V -generic filters U’s.
As a result we have a family of pairs {(V {0,1},Uα)α∈I}. There exist,
however, corresponding reductions of V B to 2-valued models as in
the above family of pairs. This follows from Theorem 1.
Lemma 6. The family {(V {0,1},Uα)α∈I} is given by the random forcing
extensions {V [Uα], α ∈ I}.
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In this way we avoid just to duplicate isomorphic copies of
V {0,1}. Rather there are 2-valued forcing extensions V [Uα]{0,1} =

V [Uα], α ∈ I respecting 2-valued algebras and ultrafilters Uα. Now
we can give the construction of a spacetime manifold M4 via local
coordinate frames supported by the models of ZFC. Let M4 be a
smooth 4-manifold with a smooth atlas {Uα ≃ R4 : α ∈ J}.
Definition 2. We call an atlas {Uα ≃ R4 : α ∈ J} of M4 L-supported if
for every Uα there exists V -generic ultrafilter Uα and the model V [Uα] such
that the formalisations of Uα read

Uα ≃ R4
V [Uα] . (9)

If for every local QM frame B = Bα ∈ B and its corresponding 2-valued
forcing reduction V [Uα] every smooth atlas of M4 contains all formalisa-
tions as in (9), then we say that M4 covers smoothly L.

Here RV [Uα] is the unique model of complete algebraically
closed field of real numbers in the model V [Uα].
Theorem 2. If every atlas of a smooth R4 covers smoothly L then such R4

cannot be the standard smooth R4.

Proof. The family {Bα} of QM frames is not any single-element
family (see Corollary 1) so thus the families of {V Bα} and its 2-
valued reductions {V [Uα]}. From the smooth covering of L property
as in Definition 2 every smooth atlas on R4 contains a family of {Uα}
with the corresponding formalisations {Uα ≃ R4

V [Uα]}. Thus every
smooth atlas cannot be a single-chart one. So we have smooth R4

whose none smooth atlas is single-chart. Now it is enough to note that
any smooth R4 which is diffeomorphic to the standard R4 assumes
1-chart smooth atlas. Otherwise it would not be diffeomorphic to the
standard R4.
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So to make agreement between smooth structure on R4 and QM
lattice L such that L supports this structure requires referring to ex-
otic R4. The standard R4 cannot cover L. If such an agreement took
place in the real evolution of the universe the phenomenon of chang-
ing models of set theory from V to the forcing extension V [Uα]
should also be a physical process. This more that as we saw in Sec. 2
certain exotic R4 considered as input of the cosmological model al-
lows for predicting the values of important physical parameters like
GUT and electroweak energy scales and the neutrino masses.

4. Discussion

One disturbing feature of the presented model is that the exotic R4

generating reliable values of physical parameters is determined by
the embedding

R4 ⊂ K3#CP 2 .

What is a physical role ascribed to K3#CP 2? One possible answer
is to see R4 as a small part of the entire universe which remains
outside of our observational capabilities. It is not excluded by cur-
rent experiments (cf. Asselmeyer-Maluga and Król, 2018). However,
accepting this point of view there remains the question about the ori-
gins of shape and compactness of the 4-dimensional large universe
likeK3#CP 2. One indication is the uniqueness of theK3 surface as
Ricci flat Callabi-Yau manifold, without closed time-like loops. Pos-
sibly certain minimality conditions imposed from general relativity
would enforce such structure of the universe. Moreover this is the
peculiar and important prediction of our model that the universe at
largest scales is compact and based on smooth (exotic) K3 surface.
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Another possibility is the fundamental role ascribed to exotic
4-smoothness on open 4-manifolds in the evolution of the universe,
especially exotic R4 and S3 ×Θ R. This indicates rather technical
and purely mathematical appearance of K3#CP 2 which, however,
determines both spatial topological transitions supporting physical
results. Anyway the model shows that exotic smoothness on open
4-manifolds appears as new and fundamental tool for physics. Many
unanswered so far questions of physics gain new formulations result-
ing in their resolutions.

It seems quite important to derive these exotic smooth manifolds
directly from QM formalism. If succeeded the model would show
very strong indication that the differential structure of 4-dimensional
spacetime regions must be exotic. We showed that the standard struc-
ture on large scales of the universe does not agree with QM. Simi-
lar approach, though using somewhat different techniques, have been
proposed and developed already in (Król, Asselmeyer-Maluga et al.,
2017; Król, Klimasara et al., 2017). The proposal here is an impor-
tant step into this direction. There remains, however, to determine
precisely this unique exotic R4 ⊂ K3#CP 2 from QM.
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