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POSSIBLE PHYSICAL UNIVERSES

1. INTRODUCTION

Einstein famously claimed that “what really interests me is
whether God had any choice in the creation of the world.” This is
generally considered to be a whimsical version of the question, ‘is
there only one logically possible physical universe?’ The modern
answer to this question is: ‘apparently not!’

In this paper, we will approach the notion of possible physical
universes using the philosophical doctrine of structural realism,
which asserts that, in mathematical physics at least, the physical
domain of a true theory is an instance of a mathematical struc-
ture.1 It follows that if the domain of a true theory extends to the
entire physical universe, then the entire universe is an instance
of a mathematical structure. Equivalently, it is asserted that the
physical universe is isomorphic to a mathematical structure. Let
us refer to this proposal as ‘universal structural realism’.

Whilst the definition of structural realism is most frequently
expressed in terms of the set–theoretical, Bourbaki notion of
a species of mathematical structure, one can reformulate the def-
inition in terms of other approaches to the foundations of mathe-
matics, such as mathematical category theory. In the latter case,

1This notion was originally advocated by Patrick Suppes (1969), Joseph
Sneed (1971), Frederick Suppe (1989), and others.
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one would assert that our physical universe is an object in a math-
ematical category.

Many of the authors writing about such ideas neglect to assert
that the universe is an instance of a mathematical structure, but
instead claim that the universe is a mathematical structure. In
some cases this can be taken as merely an abbreviated form of
speech; in others, the distinction in meaning is deliberate, and
such authors may be sympathetic to the notion that the physical
universe is nothing but form, and the notion of substance has
no meaning. This corresponds to Ladyman’s distinction (1998)
between the ontic and epistemic versions of structural realism.
Whilst the epistemic version accepts that mathematical physics
captures the structure possessed by the physical world, it holds
that there is more to the physical world beyond the structure that
is possesses. In contrast, the ontic version holds that the structure
of the physical world is the only thing which exists.

Those expressions of universal structural realism which state
that ‘the’ physical universe is an instance of a mathematical struc-
ture, tacitly assume that our physical universe is the only physical
universe. If one removes this assumption, then universal struc-
tural realism can be taken as the two–fold claim that (i) our
physical universe is an instance of a mathematical structure, and
(ii) other physical universes, if they exist, are either different in-
stances of the same mathematical structure, or instances of differ-
ent mathematical structures. Given that mathematical structures
are arranged in tree–like hierarchies, other physical universes may
be instances of mathematical structures which are sibling to the
structure possessed by our universe. In other words, the mathe-
matical structures possessed by other physical universes may all
share a common parent structure, from which they are derived
by virtue of satisfying additional conditions. This would enable
us to infer the mathematical structure of other physical universes
by first generalizing from the mathematical structure of our own,
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and then classifying all the possible specializations of the com-
mon, generic structure.

It is common these days to refer to the hypothetical collec-
tion of all physical universes as the multiverse. I will refrain from
using the phrase ‘ensemble of all universes’, because an ensemble
is typically considered to be a space which possesses a probabil-
ity measure, and it is debatable whether the universe collections
considered in this paper possess a natural probability measure. It
should also be emphasised that no physical process will be sug-
gested to account for the existence of the multiverses considered
in this paper. This paper will not address those theories, such
as Linde’s chaotic inflation theory (1983a and 1983b) or Smolin’s
theory of cosmological natural selection (1997), which propose
physical processes that yield collections of universes or universe–
domains. The universes considered in this paper are mutually
disjoint, and are not assumed to be the outcome of a common
process, or the outcome of any process at all.

If a physical universe is conceived to be an instance of a mathe-
matical structure, i.e. a structured set, then it is natural to suggest
that the multiverse is a collection of such instances, or a collection
of mathematical structures. Tegmark, for example, characterises
this view as suggesting that “some subset of all mathematical
structures... is endowed with... physical existence,” (1998, p1). As
Tegmark points out, such a view of the multiverse fails to explain
why some particular collection of mathematical structures is en-
dowed with physical existence rather than another. His response
is to suggest that all mathematical structures have physical exis-
tence.

Like many authors, Tegmark implicitly assumes that the phys-
ical universe must be a structured set (or an instance thereof). As
Rucker asserts, “if reality is physics, if physics is mathematics, and
if mathematics is set theory, then everything is a set,” (Rucker
1982, p200). However, as already alluded to, mathematics cannot
be identified with set theory, hence it doesn’t follow that every-
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thing is a set. There are mathematical objects, such as topoi,
which are not sets. Hence, it may be that the physical universe is
not a set.

Category theory is able to embrace objects which are not sets.
A category consists of a collection of objects such that any pair
of objects has a collection of morphisms between them. The mor-
phisms satisfy a binary operation called composition, which is
associative, and each object has a morphism onto itself called
the identity morphism. For example, the category Set contains
all sets as objects and the functions between sets as morphisms;
the category of topological spaces has continuous functions as
morphisms; and the category of smooth manifolds has smooth
(infinitely–differentiable) maps as morphisms. One also has cat-
egories such as the category Top of all topoi, in which the mor-
phisms need not be special types of functions and the objects
need not be special types of sets. One can therefore generalize the
central proposition of universal structural realism, to assert that
the physical universe is an object in a mathematical category.

If the physical universe is not a structured set of some kind,
then the multiverse may not be a collection of structured sets
either. In fact, in the case of Tegmark’s suggestion that the mul-
tiverse consists of all mathematical sets, it is well–known that
there is no such thing as the set of all sets, so Tegmark would
be forced into conceding that the multiverse is not a set itself,
but the category of all sets, perhaps. More generally, one could
suggest that the multiverse is a collection of mathematical ob-
jects, which may or may not be structured sets. The multiverse
may be a category, but it may not be a category of structured
sets. The analogue of Tegmark’s suggestion here would perhaps
be to propose that all categories physically exist. Categories can
be related by maps called ‘functors’, which map the objects in one
category to the objects in another, and which map the morphisms
in one category to the morphisms in the other category, in a way
which preserves the composition of morphisms. Furthermore, one
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can relate one functor to another by something called a ‘natu-
ral transformation’. In effect, one treats functors as higher–level
objects, and natural transformations are higher–level morphisms
between these higher–level objects. Accordingly, natural transfor-
mations are referred to as ‘2–morphisms’. Whilst a category just
possesses objects and morphisms, a 2–category possesses objects,
morphisms and 2–morphisms. The collection of all categories is
a 2–category in the sense that it contains categories, functors be-
tween categories, and natural transformations between functors;
each category is an object, the functors between categories are
morphisms, and the natural transformations are 2–morphisms.
However, the 2–category of all categories is only one example of
a 2–category. A 2–category which has categories as objects, need
not contain all categories, and a 2–category need not even have
categories as objects. To fully develop Tegmark’s suggestion, one
would need to propose that all 2–categories physically exist, and
the latter itself is just one example of a 3–category. One would
need to continue indefinitely, with the category of all n–categories
always just one example of an n+ 1–category, for all n ∈ N.

Let us return, however, to the notion that a physical universe
is an instance of a structured set, and let us refine this notion
in terms of mathematical logic. A theory is a set of sentences, in
some language, which is closed under logical implication. A model
for a set of sentences is an interpretation of the langauge in which
those sentences are expressed, which renders each sentence as true.
Each theory in mathematical physics has a class of models asso-
ciated with it. As Earman puts it, “a practitioner of mathemat-
ical physics is concerned with a certain mathematical structure
and an associated set M of models with this structure. The...
laws L of physics pick out a distinguished sub–class of models
ML := Mod(L) ⊂M, the models satisfying the laws L (or in more
colorful, if misleading, language, the models that “obey” the laws
L),” (p4, 2002). Hence, any theory whose domain extends to the
entire universe, (i.e. any cosmological theory), has a multiverse
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associated with it: namely, the class of all models of that theory.
For a set Σ of sentences, let Mod Σ denote the class of all models
of Σ. The class Mod Σ, if non–empty, is too large to be a set,
(Enderton 2001, p92). Hence, in this sense, the multiverse associ-
ated with any cosmological theory is too large to be a set itself.
At face value, this seems to contradict the fact that, whilst many
of the multiverses considered in cosmology possess an infinite car-
dinality, and may even form an infinite–dimensional space, they
are, nevertheless, sets. This apparent contradiction arises because
physicists tacitly restrict the range of interpretations of the lan-
guages in which their theories are expressed, holding the meaning
of the predicates fixed, but allowing the variables to range over
different domains.

A theory T is complete if for any sentence σ, either σ or ¬σ
belongs to T . If a sentence is true in some models of a theory
but not in others, then the theory is incomplete. Gödel’s first in-
completeness theorem demonstrates that Peano arithmetic is in-
complete. Hence, any theory which includes Peano arithmetic will
also be incomplete. If a final theory of everything includes Peano
arithmetic, (an apparently moderate requirement), then the final
theory will be incomplete. Such a final theory of everything would
not eliminate contingency. There would be sentences true in some
models of a final theory, but not true in others. Hence, the mul-
tiverse hypothesis looms over even a hypothetical final theory of
everything. Gödel’s incompleteness theorem dispels the possibility
that there is only one logically possible physical universe.

Jesus Mosterin (2004) points out that “the set of all possible
worlds is not at all defined with independence from our conceptual
schemes and models. If we keep a certain model (with its underly-
ing theories and mathematics) fixed, the set of the combinations
of admissible values for its free parameters gives us the set of all
possible worlds (relative to that model). It changes every time
we introduce a new cosmological model (and we are introducing
them all the time). Of course, one could propose considering the
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set of all possible worlds relative to all possible models formulated
in all possible languages on the basis of all possible mathematics
and all possible underlying theories, but such consideration would
produce more dizziness than enlightment.”

Mosterin’s point here is aimed at the anthropic principle, and
the suggestion that there are multiverses which realize all possible
combinations of values for the free parameters in physical theories
such as the standard model of particle physics. At face value, these
are different types of multiverse than the ones proposed in this
paper, which are obtained by varying mathematical structures,
and by taking all the models of a fixed mathematical structure,
rather than by taking all the values of the free parameters within
a theory. However, the values chosen for the free parameters of
a theory correspond to a choice of model in various parts of the
theory. For example, the free parameters of the standard model
of particle physics include the coupling constants of the strong
and electromagnetic forces, two parameters which determine the
Higgs field potential, the Weinberg angle, the masses of the ele-
mentary quarks and leptons, and the values of four parameters in
the Kobayashi–Maskawa matrix which specifies the ‘mixing’ of the
{d, s, b} quark flavours in weak force interactions. The value cho-
sen for the coupling constant of a gauge field with gauge group G
corresponds to a choice of metric in the lie algebra g, (Derdzinksi
1992, p114–115); the Weinberg angle corresponds to a choice of
metric in the lie algebra of the electroweak force, (ibid., p104–
111); the values chosen for the masses of the elementary quarks
and leptons correspond to the choice of a finite family of irre-
ducible unitary representations of the local space–time symmetry
group, from a continuous infinity of alternatives on offer; and the
choice of a specific Kobayashi–Maskawa matrix corresponds to the
selection of a specific orthogonal decomposition σd′ ⊕ σs′ ⊕ σb′ of
the fibre bundle which represents a generalization of the {d, s, b}
quark flavours, (ibid., p160).



80 Gordon McCabe

In general relativity, a universe is represented by a 4–
dimensional differential manifold M equipped with a metric ten-
sor field g and a set of matter fields and gauge force fields {φi}
which generate an energy–stress–momentum tensor T that satis-
fies the Einstein field equations

T = 1/(8πG)(Ric− 1/2 S g) .

Ric denotes the Ricci tensor field determined by g, and S denotes
the curvature scalar field. The matter fields have distinctive equa-
tions of state, and include fluids, scalar fields, tensor fields, and
spinor fields. Gauge force fields, such as electromagnetism, are
described by n–form fields. Hence, one can define a general rela-
tivistic multiverse to be the class of all models of such n–tuples
{M, g, φ1, ...}, interpreted in this restricted sense.

Alternatively, to take an example suggested by David Wal-
lace (2001), quantum field theory represents a universe to be
a Lorentzian manifold (M, g) which is equipped with a Hilbert
space H , a density operator ρ on H , and a collection of
operator–valued distributions {φ̂i} on M which take their val-
ues as bounded self–adjoint operators on H . A quantum field
theory multiverse is the class of all models of such n–tuples
{M, g,H , ρ, φ̂1, ...}, interpreted in this restricted sense.

Assuming that cosmological theories are axiomatizable,2 one
can abstract from the theories which may just apply to our uni-
verse or a collection of universes in a neighbourhood of our own,
by varying or relaxing the axioms. Each set of axioms has its
own class of models, which, in this context, provides a multiverse.
Hence, by varying or relaxing the axioms of a theory which is
empirically verified in our universe, one generates a tree–like hi-
erarchy of multiverses, some of which are sibling to the original
class of models, and some of which are parents or ‘ancestors’ to
the original class.

2I.e. assuming that there is a decidable set of sentences (Enderton p62) in
such a theory, from which all the sentences of the theory are logically implied.
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If an empirically verified theory, with a class of models M,
and a set of laws L, defines a subclass of models ML, and if those
laws contain a set of free parameters {pi : i = 1, ..., n}, then one
has a different class of models ML(pi) for each set of combined
values of the parameters {pi}. These multiverses are sibling to
each other in the hierarchy. By relaxing the requirement that any
set of laws be satisfied in the mathematical structure in question,
one obtains a multiverse M which is parent to all the multiverses
ML(pi). By varying the axioms that define the original mathemat-
ical structure, one obtains sibling mathematical structures which
have classes of models {Nj} sibling to M. By relaxing the ax-
ioms that define the original mathematical structure, one steadily
obtains more general mathematical structures which have more
general classes of model Pk ⊃M. Each such Pk is a parent or an-
cestor in the hierarchy to all the multiverses {Nj}. For example,
if we take general relativistic cosmology to provide a theory of our
own universe, one can obtain a selective hierarchy of multiverses
such as the following:

• All Friedmann–Robertson–Walker (FRW) spatially
isotropic Lorentzian 4–manifolds and matter field pairings.

• All Bianchi spatially homogeneous Lorentzian 4–manifolds
and matter field pairings.

• All Lorentzian 4–manifolds which solve the
canonical/initial–value formulation of the Einstein field
equations with respect to some combination of matter fields
and gauge fields,3 for a fixed spatial topology Σ.

• All Lorentzian 4–manifolds which satisfy the Einstein field
equations with respect to some combination of matter fields
and gauge fields, for the value of the gravitational constant
G ≈ 6.67×10−8cm3g−1s−2 that we observe in our universe.

3Note that matter fields and gauge force fields must satisfy their own
constraint equations and evolution equations.
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• All Lorentzian 4–manifolds which satisfy the Einstein field
equations with respect to some combination of matter fields
and gauge fields, for a different value of the gravitational
constant G.

• All Lorentzian 4–manifolds equipped with some combina-
tion of matter fields and gauge fields, irrespective of whether
they satisfy the Einstein field equations.

• All Lorentzian 4–manifolds.

• All manifolds of arbitrary dimension and geometrical signa-
ture, which satisfy the Einstein field equations with respect
to some combination of matter fields and gauge fields.

• All 4–manifolds equipped with combinations of smooth ten-
sor and spinor fields4 which satisfy differential equations.

• All 4–manifolds.

• All differential manifolds of any dimension equipped with
combinations of smooth tensor and spinor fields which sat-
isfy differential equations.

• All differential manifolds.

• All topological manifolds equipped with combinations of
continuous functions which satisfy algebraic5 equations.

• All topological spaces with the cardinality of the continuum
equipped with combinations of continuous functions which
satisfy algebraic equations.

4Note that global spinor fields require a manifold to possess a spin struc-
ture.
5Algebraic equations involve only the operations defined upon the algebra

of functions A . This means operations such as scalar multiplication, sum,
product, and derivation. In this context, a derivation of A is a mapping
X : A → A which is linear, X(af + bg) = aXf + bXg, and which satisfies
the so–called Leibniz rule, X(fg) = fX(g) +X(f)g.
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• All topological spaces of any cardinality equipped with com-
binations of continuous functions which satisfy algebraic
equations.

• All topological spaces.

• All sets equipped with combinations of functions which sat-
isfy algebraic equations.

• All sets.

• All categories.

Mosterin comments acerbically that “authors fond of many
universes talk about them in a variety of incompatible ways. The
totality of the many universes accepted by an author forms the
multiverse for that author. There are at least as many multiverses
as authors talking about them; in fact, there are more, as some
authors have several multiverses to offer,” (2004). Bearing this in
mind, it should be declared that this paper is only interested in
multiverses consisting of the models of empirically verified theo-
ries, or generalisations obtained from such theories. Hence, multi-
verses derived from supersymmetry, supergravity, superstring or
M theory, will not be considered.

From the list of multiverses above, we now proceed to consider
a couple of interesting cases. In particular, we will be interested
in understanding how special or typical our own universe is with
respect to these multiverses.

2. THE MULTIVERSE OF SPATIALLY HOMOGENEOUS
MODELS

The purpose of this section is to analyse an argument by
Collins and Hawking that our own spatially isotropic universe
is extremely atypical even in the space of spatially homogeneous
models. To gain some understanding of the argument, however,
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we need to begin with some facts about spatially homogeneous
models.

It is generally believed that, up to local isometry, a spatially
homogeneous model, equipped with a fluid satisfying a specific
equation of state, can be uniquely identified by specifying both
its Bianchi type, and by specifying its dynamical history. The
Bianchi type classifies the 3–dimensional Lie algebra of Killing
vector fields on the spatially homogeneous hypersurfaces of such
a model.

In any 3–dimensional Lie algebra, the space of all possible
bases is 9–dimensional, and the general linear group GL(3,R) acts
simply transitively upon this space of bases. Hence, if one fixes
a basis, then one can establish a one–to–one mapping between the
bases in the Lie algebra and the matrices in GL(3,R). Needless to
say, GL(3,R) is a 9–dimensional group. Now, specifying the struc-
ture constants of a 3–dimensional Lie algebra relative to a par-
ticular basis uniquely identifies a particular Bianchi type. Given
a Bianchi type fixed in such a manner, one can allow GL(3,R) to
act upon the space of bases in the Lie algebra. Under some changes
of basis, the structure constants will change, whilst under other
changes of basis, they will remain unchanged. Hence, the action
of GL(3,R) upon the space of structure constants for a partic-
ular Bianchi type is multiply transitive; the action of GL(3,R)
upon the space of structure constants has a non–trivial stability
subgroup. The dimension of this stability subgroup depends upon
the Bianchi type.

Another way of looking at this is to consider the 6–dimensional
space of all possible structure constants for all possible 3–
dimensional Lie algebras. The general linear group GL(3,R) acts
upon this space. The GL(3,R)–action does not map the structure
constants of one Bianchi type into another; changing the basis in
a Lie algebra will not give you the structure constants of a differ-
ent Lie algebra. Hence, each orbit of GL(3,R) in the space of all
structure constants corresponds to a particular Bianchi type. The
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dimension p of each orbit is given in the table below, (Collins and
Hawking 1973, p321; Hewitt et al 1997, p210; MacCallum 1979,
p541). The dimension of the GL(3,R)–orbit for each Bianchi type
equals the number of free parameters required to specify the struc-
ture constants for that Bianchi type. Given that GL(3,R) is a 9–
dimensional group, it follows that its stability group at each point
in the space of structure constants will be 9−p dimensional. This
is the dimension of the space of bases under which the structure
constants are unchanged.

Table 1: Dimension of the GL(3,R)–orbits for each Bianchi type.

Type Dimension
I 0
II 3

VI0 5
VII0 5
VIII 6
IX 6
V 3
IV 5
VIh 6
VIIh 6

Collins and Hawking (1973) argued that the set of spatially
homogeneous but anisotropic models which tend towards isotropy
as t → ∞ is of measure zero in the set of all spatially homoge-
neous initial data. They first excluded all the Bianchi types whose
metrics are of measure zero in the space of all 3–dimensional
homogeneous metrics. This includes all the Bianchi types whose
GL(3,R)–orbits are of dimension less than 6. They then excluded
types VIh and VIII on the grounds that they do not contain any
FRW models as limiting cases. However, the class of Bianchi type
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VIIh models contain the ever–expanding FRW universes, with
spatial curvature k < 0, as special cases, and the class of type IX
models contain the closed k > 1 FRW universes. In the class of
type VIIh models, where σij is the shear tensor and H is a gen-
eralized Hubble parameter, approach to isotropy was defined to
mean that the ‘distortion’ σ/H → 0 as t → ∞, and that the
cumulative distortion

∫ t
σ dt approaches a constant as t → ∞,

where σ = σii. Collins and Hawking concluded that there is no
open neighbourhood of the FRW models in the space of either
type VIIh or type IX metrics which tends towards isotropy. How-
ever, they did find that in the space of type VII0 metrics, which
contains the k = 0 FRW universes as special cases, and with the
matter assumed to be zero–pressure ‘dust’, there is an open neigh-
bourhood about such FRW universes which do approach isotropy.
However, the space of type VII0 metrics is of measure zero in the
space of all homogeneous metrics. Moreover, the assumption of
a zero–pressure matter field prevents one applying this result to
universes which have a radiation–dominated phase, such as our
own is believed to have undergone in its early history.

From their conclusion that the set of spatially homogeneous
models which approach isotropy as t → ∞ is of measure zero,
Collins and Hawking also inferred that isotropic models are unsta-
ble under spatially homogeneous perturbations. In other words,
it was argued that a model which is initially almost isotropic
and spatially homogeneous, will tend towards anisotropy. How-
ever, Barrow and Tipler correctly point out that the require-
ment σ/H → 0 is the condition of ‘asymptotic stability’, and
the open FRW universe in the type VIIh Bianchi class is sta-
ble under spatially homogeneous perturbations in the sense that
σ/H approaches a constant. According to Barrow and Tipler this
shows “that isotropic open universes are stable in the same sense
that our solar system is stable. As t → ∞ there exist spatially
homogeneous perturbations with σ/H → constant but there are
none with σ/H →∞. The demand for asymptotic stability is too
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strong a requirement,” (1986, p425). Whilst the set of spatially
homogeneous models which approach isotropy is of measure zero,
our own universe is not exactly isotropic, it is merely ‘almost–
isotropic’, and, moreover, it is growing increasingly anisotropic
as a function of time. Collins and Hawking fail to demonstrate
that almost–isotropic spatially homogeneous models are of mea-
sure zero in the space of spatially homogeneous models. More-
over, our own universe is almost a FRW model in the sense that
it has approximate spatial homogeneity and approximate spatial
isotropy. Our own universe, then, has been perturbed by inhomo-
geneous perturbations. Collins and Hawking fail to demonstrate
that almost–isotropic and almost–homogeneous universes, like our
own, are of measure zero in the space of almost homogeneous
models.

To derive their conclusion that type VIIh models fail to
isotropize, Collins and Hawking assumed various reasonable con-
ditions defining the nature of matter, but they also assumed a zero
cosmological constant, an assumption which recent astronomical
evidence for an accelerating universe has cast into serious doubt.
Wald (1983) demonstrated that all initially expanding non–type
IX Bianchi models with spatial curvature k ≤ 0 and a positive
cosmological constant, do in fact isotropize, expanding exponen-
tially, and tending toward de Sitter space–time, with σ/H → 0 as
t → ∞. However, Wald’s result only applies to Bianchi type IX
models if one assumes that the cosmological constant is initially
large in comparison with the scalar curvature of the hypersur-
faces of homogeneity, (Earman and Mosterin, 1999). In addition,
Wald’s result has not been extended to spatially inhomogeneous
universes. The attempt by Jensen and Stein–Schabes (1987) to ex-
tend Wald’s result makes the physically unacceptable assumption
that the scalar curvature is non–positive throughout the space–
time. Even with initial non–positive scalar curvature, in a spa-
tially inhomogeneous universe one would expect pockets of pos-
itive curvature to form with the passage of time, such as those
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around black holes, stars and planets. The exterior Schwarzschild
solution, generalized to the case of a positive cosmological con-
stant, has such positive curvature, and doesn’t evolve towards de
Sitter space–time, (Earman and Mosterin 1999). It remains an
open question whether initially expanding, spatially inhomoge-
neous universes of initial non–positive curvature, which develop
localized pockets of positive curvature, evolve towards de Sitter
space–time if they have a positive cosmological constant.

It is true, however, that the finite–dimensional space of exact
FRW models is of measure zero in the finite–dimensional space of
spatially homogeneous models, and Collins and Hawking demon-
strate that spatially homogeneous anisotropic models do not gen-
erally approach isotropic ones, unless the cosmological constant
is non–zero. As we will see, the space of spatially homogeneous
models is itself the complement of an open dense subset in the
infinite–dimensional space of all solutions to the Einstein field
equations. Hence, the space of exact FRW models is as numerous
in the space of spatially homogeneous models as the integers are
in the set of real numbers, and the set of spatially homogeneous
models is as prevalent in the space of all solutions to the Einstein
field equations as the points in the surface of solid ball are to the
points in the interior of the solid ball.

3. THE MULTIVERSE OF ALL SOLUTIONS TO THE
EINSTEIN FIELD EQUATIONS

For each 4–dimensional manifold M, one has the space of all
solutions to the Einstein field equations on that manifold, E (M).
Rather than dealing with matter field solutions, existing anal-
ysis has concentrated on vacuum solutions of the Einstein field
equations, and yet further restrictions have been placed on the
topology and geometry of the solutions considered. For example,
work has been done on the space Ẽ (M) of vacuum solutions of
a globally hyperbolic space–time with compact spatial topology
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Σ, containing a constant mean extrinsic curvature Cauchy hyper-
surface. The restrictions placed upon such solution spaces means
that they really just contain the solutions of initial data sets.
Nothing is revealed about spaces of solutions which do not admit
an initial–value formulation.

Ẽ (M) is not a manifold, but a stratified space. The points rep-
resenting solutions with a non–trivial isometry group are said to
have conical neighbourhoods. The strata consist of space–times
with conjugate isometry groups, (Isenberg and Marsden 1982,
p187).

Two space–time solutions are considered to be physically
equivalent if one is isometric to the other, hence work has
been done on the quotient space Ẽ (M)/D(M) with respect
to the diffeomorphism group D(M) of the 4–manifold. Again,
Ẽ (M)/D(M) is not a manifold itself, but a stratified space. The
points in Ẽ (M)/D(M) with no isometry group form an open and
dense subset. In other words, the stratum of equivalence classes
of solutions to Einstein’s equations with no isometries, is open
and dense in Ẽ (M)/D(M), (Isenberg and Marsden, p210). This
is thought to confirm the general presumption that space–times
with no symmetry are extremely typical in the set of space–times,
and space–times with some degree of symmetry are extremely
special.6 The Friedmann–Robertson–Walker models, and pertur-
bations thereof, considered to be the physically realistic models for
our universe, are believed to be extremely atypical in the space of
all solutions to the Einstein field equations. As Turner comments,
“even the class of slightly lumpy FRW solutions occupies only
a set of measure zero in the space of initial data,” (Turner 2001,
p655).

This, however, might be a somewhat hasty conclusion to reach.
As Ellis comments: “We have at present no fully satisfactory mea-
sure of the distance between two cosmological models... or of the

6In this context, the term ‘special’ will be considered equivalent to the
term ‘atypical’.
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probability of any particular model occurring in the space of all
cosmologies. Without such a solid base, intuitive measures are of-
ten used... the results obtained are dependent on the variables cho-
sen, and could be misleading — one can change them by changing
the variables used or the associated assumptions. So if one wishes
to talk about the probability of the universe or of specific cosmo-
logical models, as physicists wish to do, the proper foundation for
those concepts is not yet in place,” (1999).

When a collection of objects forms a finite–dimensional man-
ifold, and in the absence of any sort of probability measure, one
uses the Lebesgue measure, or an analogue thereof, to define pre-
cisely what it means for a property to be typical or special. If
the manifold provides a finite measure space, then a property
which is only possessed by a subset of measure zero is considered
to be special, while if the manifold provides an infinite measure
space, then a property which is only possessed by a subset of
finite measure is considered to be special. In both cases, the prop-
erty which defines the complement is considered to be typical of
the collection of objects. In the case of an infinite–dimensional
topological vector space, there is no finite, translation invariant
measure to provide an analogue of the Lebesgue measure, and al-
though non–translation invariant Gaussian measures do exist on
such infinite–dimensional vector spaces, in the case of an infinite–
dimensional manifold there is no diffeomorphism–invariant mea-
sure which is considered to be suitable. As Callender comments,
“debates about likely versus unlikely initial conditions without
a well–defined probability are just intuition–mongering,” (2004).
Given the difficulties with finding such a measure, topological no-
tions of typical and special have been proposed to replace the
measure–theoretic notions.

The first candidate for a topological notion of typicality is the
notion of a dense subset. However, the set of rational numbers is
dense in the set of real numbers, despite having a lower cardinality,
and despite being of Lebesgue measure zero, hence a dense subset
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of a topological space is not necessarily considered to be typical.
Instead, following Baire, an open and dense subset of a topo-
logical space is ‘strongly typical’, and a set which contains the
intersection of a countable collection of dense and open subsets is
‘residual’, or ‘typical’ (Heller 1992, p72). The irrational numbers
are a residual subset of the reals, and therefore typical, and their
complement, the rational numbers, are atypical. Baire’s theorem
shows that in a complete metric space or a locally compact Haus-
dorff space, a countable intersection of open dense subsets must
itself be dense. However, the attraction of the Baire definition of
typicality is mitigated by the fact that sets which are open and
dense in Rn can have arbitrarily small Lebesgue measure, (Hunt
et al 1992). Moreover, an infinite–dimensional manifold fails to
be locally compact. It is therefore far from clear that a collection
of universes which is open and dense in a multiverse collection,
should be considered as typical, or that points which belong to
the complement, (those with some degree of symmetry), should
be considered special. There is no a priori notion of typicality on
such sets, so it is rather unwise to make such presumptions. In the
classical statistical mechanics of gases, it is always asserted that
a homogeneous distribution of the gas is the macrostate of high-
est entropy because it has the greatest volume of microstates, the
greatest volume of phase space, associated with it. This means
that the homogeneous macrostates must have the highest mea-
sure, and certainly not measure zero. Thus, there is certainly no
a priori reason from the finite–dimensional case to think that in
the case of continuous fields, a highly symmetrical configuration
should be atypical.

Note that the present universe only approximates a FRW
model on length scales greater than 100 Mpc. On smaller
length scales, the universe exhibits large inhomogeneities and
anisotropies. The distribution of matter is characterised by walls,
filaments and voids up to 100 Mpc, with large peculiar velocities
relative to the rest frame defined by the cosmic microwave back-
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ground radiation (CMBR). Whilst the CMBR indicates that the
matter in the universe was spatially isotropic and homogeneous
to a high degree when the universe was 104− 105 yrs old, the dis-
tribution and motion of galaxies is an indicator of the distribution
of matter in the present era, when the universe is ∼ 1010 yrs old.
Due to the tendency of gravitation to amplify small initial in-
homogeneities, the level of inhomogeneity in the distribution of
matter has been growing as a function of time.

In contrast with the behaviour of a gas in classical statistical
mechanics, the distribution of matter in a gravitational system
will become more ‘clumpy’ as a function of time. Hence, to pre-
serve consistency with the second law of thermodynamics it is gen-
erally suggested that for a gravitational system, such clumpy con-
figurations correspond to higher–entropy macrostates than config-
urations with a uniform distribution of matter. Barrow and Tipler,
for example, suggest that a gravitational entropy would measure
the deviation of a universe from exact spatial isotropy and homo-
geneity (1986, p446). Penrose suggests that gravitational entropy
is related to the Weyl tensor Cαβγδ, which is zero for exact FRW
models, but non–zero for the space–time around a massive body
such as a star or black hole. However, anisotropy does not entail
a non–zero Weyl tensor, and a non–zero Weyl tensor does not
entail inhomogeneity. Barrow and Tipler note that ‘many’ space–
times tend towards a plane gravitational wave geometry, which
has a zero Weyl tensor irrespective of the level of anisotropy (1986,
p447). On the other hand, there are many anisotropic but spa-
tially homogeneous models, in which the Weyl tensor is non–zero.
Thus, if we accept that the Weyl tensor measures gravitational
entropy, then even a universe which is exactly spatially homoge-
neous, will, if it exhibits anisotropic shears and a non–zero Weyl
tensor, possess a higher entropy than a perfectly isotropic and
homogeneous FRW universe.

Ellis (2002) suggests that the spatial divergence of the electric
part of the Weyl tensor Eαγ = CαβγδU

βU δ, for a timelike ob-
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server vector field U , may be a measure of gravitational entropy.
This quantity is attractive because it does seem to have some
correlation to the level of spatial inhomogeneity. One could take
the integral

∫
Σ ||∇aρ|| dµ of the spacelike gradient of the matter

density field ρ as a measure of the amount of inhomogeneity in
the matter field over a spacelike hypersurface Σ. In the case of
a homogeneous matter field, this integral vanishes. Ellis suggests
that in the linearized formulation of general relativity,

∇aEab =
1

3
∇bρ ,

hence the integral
∫

Σ ||∇
aEab|| d µ may, in some circumstances, be

proportional to the level of inhomogeneity, and thence a good indi-
cator of gravitational entropy. Suppose that one takes the integral
of ∇aEab for an arbitrary spatially homogeneous but anisotropic
model. Being spatially homogeneous, the spatial gradient of ρ van-
ishes. If one introduces an inhomogeneous perturbation to this
model, then the integral of ∇aEab should presumably increase.
The inhomogeneity of our own universe is currently growing, and,
if the inhomogeneous geometries are far more prevalent, in some
sense, than homogeneous geometries, then our universe must be
moving into phase space macrostates of much greater entropy.

There is, however, a problem with the notion that gravita-
tional entropy should measure the deviation of a universe from
exact isotropy and homogeneity. If there is a positive cosmolog-
ical constant, and if Wald’s theorem does apply to the case of
an inhomogeneous universe, then the universe will isotropize, and
isotropy requires homogeneity. Even in the absence of a cosmolog-
ical constant, all gravitational systems, perhaps even black holes,
will eventually ‘evaporate’, and this might also entail a return to
homogeneity. Thus, if the universe tends towards either isotropy
or homogeneity in the long–term, perhaps gravitational entropy
should not measure the deviation of a universe from exact isotropy
and homogeneity.
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SUMMARY

POSSIBLE PHYSICAL UNIVERSES

The purpose of this paper is to discuss the various types of physical
universe which could exist according to modern mathematical physics.
The paper begins with an introduction that approaches the question
from the viewpoint of ontic structural realism. Section 2 takes the case
of the ‘multiverse’ of spatially homogeneous universes, and analyses the
famous Collins–Hawking argument, which purports to show that our
own universe is a very special member of this collection. Section 3 con-
siders the multiverse of all solutions to the Einstein field equations, and
continues the discussion of whether the notions of special and typical
can be defined within such a collection.
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STRESZCZENIE

MOŻLIWE FIZYCZNE WSZECHŚWIATY

Celem artykułu jest analiza różnych typów fizycznych wszechświa-
tów, które mogą istnieć według współczesnej fizyki matematycznej. We
wstępie przedstawiono tę problematykę z punktu widzenia ontycznego
realizmu strukturalistycznego. W podrozdziale 2 rozważa się „wielo-
świat” przestrzennie jednorodnych wszechświatów i poddaje analizie
słynny argument Collinsa–Hawkinga, którego celem było wykazanie,
że nasz wszechświat jest bardzo szczególnym elementem tej rodziny.
W podrozdziale 3 omawia się wieloświat wszystkich rozwiązań Einstein-
owskich równań pola i rozważa, czy pojęcia „szczególny” i „typowy”
mogą być sensownie zdefiniowane w tej rodzinie.


